

## Endocrinology and Biological Science: A Comprehensive Overview of Hormonal Mechanisms

Dr. Santiago López\*

Institute of Environmental Sciences, National University of La Plata, La Plata, Argentina

### ABSTRACT

From the extracellular space endocrine of and secrete their products the hormones and enter into the circulatory system endocrine as duties gooneys differ from exocrine like solitary glands. Hormones acts on specific organs and then secreted into the blood stream to act on specific target tissues

**Keywords:** hormones, relicense, blood.

### I. INTRODUCTION

From the extracellular space endocrine of and secrete their products the hormones and enter into the circulatory system endocrine as duties gooneys differ from exocrine like solitary glands, whose products're relicense in to the ducts which leads to the digestive tract and then to exterior to the body endocrinology is the branch of science which deals the study of ductless glands or tissues and their hormonal products. There is no structural unity. It may scatter all over the body. Elaborating several hormones as tissues, individual cells, or hormones.

These glands have association of embryological from different types of tissues including nervous tissue. Hormones acts on specific organs and then secreted into the blood stream to act on specific target tissues it stabilizes and voice specific physiological response endocrine cells and targets cells avoided direct rascals connections of hormones such as. Portal circulation between hypothalamus and hypothesis it carries the hypothalamic hormones to the pituitary cells or tissues may secrete specific substances acts on short distances of adjacent cells or tissues.

### II. ENDOCRINE GLANDS AND HORMONES

Role of hormones:- In vitro hormones are regulated by endocrine glandular cells within the body or in cultures of endocrine cells. These are usually transported by the blood stream from endocrine cells to serve as chemical messenger my acts as endocrine cells.

A hormone doesn't provide energy or building materials but it exerts profound regulatory effect on growth cells by effecting on membrane permeability, activation, deactivation of enzymes, formation of cycles A.M.P, etc. Now Hormones form a group of heterogeneous substances some are steroids, eg. Adrenocortical hormones, and sex hormones. Most of the hormones are proteins parley peptides, released by exocytosis and released by granules for hours or days.

The anterior pituitary hormone hypothalamic hormones parathyroid, calcitonin, insulin. Glucagon. Gastrointestinal hormones (secretion, gesturing etc) and posterior pituitary hormones are all peptides.

They are the derivatives of amino acids. Thyroxine and iodo tyrosine. Similarly adrenaline and noradrenaline are also defined from tyrosine the binding forms a reservoir from which hormones are released and diffuse to act on target cells are released and diffuse to act on target cells. Whereas catecholamines are not bound to plasma proteins and play short life in blood for a few minutes thyroxine bound to carrier proteins as long biological half life. They are target on the liver spleen, bone marrow. Few hormones are not specific for target cells or organs and affected or almost all cells of the body or parts of the body. They serve as binding effects on these tissues or growth hormones they specific receptor it initiates their actions. Eg. Adrenocortical hormone secreted by anterior pituitary stimulates the adrenal cortex to produce adrenocortical steroid hormones.

**History of endocrinology:-**

Endocrinology is study of science on the in eternal organs site and target tissues mainly experiment perform on harmons by Berthold in 1849. E. clinical relationships between tissue and organ abnormalities such as atrophy or enlargement and changes in particles physiological rates eg. Castration of cockerels led to no development of their combs and wattles and failure to exhibit male dominant behaviours, replacement of testes led to the development of the combined wattles, behaviour in moles agnostic.

Hypertrophy- increase in size of an organ to compensate functionally for the activity of the other best organ Testosterone was purified and crystallized in 1935. Bugloss and starling (1902) demonstrated that asbestos produced by the intestinal mucosa stimulated the secretion pancreatic juice. The active substance was hammed as secreting. Now Cells are essentially chemical machines and respond to chemical signs, messages are carried by two well defined systems hormonal system in which the chemical messenger harmons are produced by specific glands released into the blood stream and slowly act open the target cells in the body and the nervous system in which messages travel across the body in milliseconds. The chemical substances harmons produced endogenously by endocrine glands, and certain nerve cells save as special receptors. ‘The term “endocrine” refers to the system of glands or tissues that synthesize the harmons and secrete them directly into the circulatory system.

The endocrine system is more precisely a never endocrine system it not only include the glands, but also sites in the control nervous system with which the system interacts. The coordinated activity of these two major systems in responsible for the stability of the internal environment (homeostasis) in the body.

**Homeostasis of calcium –**

Blood clotting, contraction cellular secretion and number of cellular functions there is a need of requirement of calcium. It minted the need th constant level and a narrow range Fluctuation may effects homeostatic mechanisms to bring it back to normal.

Parathyroid release poratharmone it decrease in blood calcium level. Bone release store calcium. Absorb piton of calcium form the gut and reabsorption by urine tubeless in the kidney is favoured so that the blood calcium level is brought back to its original level.

After consumption food to release of another harmons above normal levels. Calcium form the thyroid gland calcite in promotes. Deposition of calcium in the bone and redoing the absorption of calcium in the gut and kidney.

Inter-relationship of endocrine glands endocrine glands are independent in its action it it may be inter related and inter dependent. It can be synergistic, complimentary, permissive and antagonistic resulting in hypo or hyperactively of the endocrine glands. These action goes to be positive or negative hyperactively leads to hyperactively. there is the secretion of hypothalamic releasing or release inhibiting harmons also synthesized in the hyperactively harmones ( median eminence and released blood into the portal blood system.

Three hyperactively harmons are also released i.e. production, soma atrophic and melanin stimulating harmones.

Hyperactively hormone from the anterior pituitary TRH is a tripe tide promotes the secretion of TSH it is not oleic and release production. Neurons can be inter connected by other neurons of the central nervous system they show the differential release of GSH and LH dopamine is a stimulator , and serotonin is an inhibitory neurotransmitter e.g. prolactin (Lactogenic harmonies ) stimulates overdoes of some animals. It acts on the female breasts and not one sex glands. The growth harmones (jomatotrophon) release is promoted by GRF. It is released from the hypothalamus under adrenergic control Dexamphetamine stimulates. GRF Release by alpha adrenergic stimulation where as it is inhibited by betadrenergic stimulation.

The hypothalamic harmones are thought to be lamented as result of aminergic neuronal activation dopamine noradrenalin and serotonin.

Harmones and vitamins harmones and vitamins are inter-related to each other due to imbalance of harmones and vitamins deficiencies may be occur on restricted diets malabsorption syndromes or in states where the body need increases eg. During body growth pregnancy and lactation.

### **Endocrine glands and hormones**

Endocrine glands are heterogeneous collection of glands distributed throughout the body in the head neck and abdomen.

Now the pituitary gland has been traditionally termed as the master of the endocrine systems these are regulated by the hypothalamic thus, the secretion of the tropic hormones from the anterior pituitary gland is controlled in two ways.

By the hypothalamic and by feedback of hormones from the endocrine target cells

Fig.

The negative feedback control of the anterior pituitary secretion environmental and endogenous stimuli act upon the hypothalamic. Which secretes specific releasing factors converge to the anterior pituitary.

Feedback control:- Over all connotations of hormones producing and secreting activity of the anterior pituitary is also influenced by the hormones of the resecting glands. Thus plasma levels of hormones of the adrenal thyroid and gonads fall the hypothalamic is stimulated to secreting the appropriate releasing hormones.

Now production of corticotrophin thyrotrophic and gonadotrophic may be occurs. On other sides the blood levels of the target glands hormones are high, the release of the hypothalamic releasing hormone is inhibited thus, such a negative feedback mechanism is responsible for the maintenance of normal target gland hormones blood levels eg. Contraceptives, adverse effect like adrenal insufficiency and failure resulting from administration of aileron corticosteroids in high doses which depress the production of endogenous corticosteroids.

Homeostatic of glucose :\_ The concentration of glucose in blood is maintained at a constant level through many factors such as food intake rate of excretion exercise, reproductive state and psychosocial condition influence is level decreases in the level of blood glucose after muscular exercise is recognized by alpha cells in the body of Langerhans. Which release hormone glucose into glucose and these the blood glucose level brought to the normal level after meal the beta cell release insulin from pancreas release a hormone. Induces capture of glucose by liver to convert into glucose. This reduces the blood glucose level and bring it back to the normal level. Vitamin D is ineffective cases of renal rickets and hypoparathyroidism the vitamin D<sub>3</sub> analogue, alfacalcidol (1,25-dihydroxycholecalciferol) is used under evolution for the treatment of renal rickets. It is also used to raise and maintain serum calcium level in hypoparathyroidism. The treatment of hypoparathyroidism consists of with drawl of the vitamins low calcium diet and administration of hydrocortisone. And vitamin E is isolated from wheat germ oil and name alpha-tocopherol. In muscle weakness increased oxidation of polyunsaturated fatty acids, vitamin E motions the germinal epithelium treatment is done for infertility in women, habitual abortion progressive muscular dystrophy, peripheral vascular disease, refractory anaemia's and haemolytic anaemia's they behaves as catalytic surfers.

### **Functional classification of hormones**

Three major classes of endocrine mentioned effects can be recognized.

- (I) Kinetic effects- includes muscle contraction, pigment migration and glandular secretions
- (II) Metabolic effects- Changes in rate and balance of reaction and tissue consists
- (III) Morphogenic effect- It concerned with growth and differentiation. Hormones are morphogenic effects on certain tissues. Thus a single hormone can produce multiple effects. Hormones are specific to receptor or enzymes for different channels of action of different hormones.

Now chemistry of hormones are on the basis of polypeptides and proteins

### **Steroids**

Derivatives of tyrosine's

These hormones show a great range of molecular weight from tripeptide like thyrotrophic releasing (TRH) to growth hormones (GH) with 190 amino acid residues and large glycoprotein hormones such as TSH.

They comprise single peptide chain. Peptides hormones are formed as prohormones or pre-hormones eg. Insulin. The C-peptide (connecting) called single chain peptide leaving insulin, which is a peptide, composed of two chains A and B connected by two disulfide bonds. They are synthesized by cisternae of endoplasmic reticulum and resolved into vesicles. They release to the exterior exocytosis.

Storied not stared in cell like peptides hormones. They form when the time of requirement steroids comprises 3-b carbon rings and a five-carbon ring faced to gather.

All the steroids are synthesized from acetate cholesterol is converted into pregnenolone in the mitochondrion catalyzed by enzyme cholesterol desmolase and they to progesterone or 17-hydroxy pregnenolone in the smooth endoplasmic reticulum. Cortical is formed from

Pregnenolone by 17 hydroxylation and aldosterone, by successive hydroxylation and dehydrogenation. The side chain of 17 hydroxylation pregnenolone is cleaved to form Androstenedione. Tyrosine derivations are the monoamines adrenaline, noradrenaline and dopamine and the thyroid hormones thyroxine and triiodothyronine e.g. Dopamine is formed from tyrosine. Now noradrenalin and adrenaline formed by the action of phenyl ethanolamine N-Methyl transferase. Thyroid hormones are formed from two molecules of iodinated tyrosine linked through an oxygen molecule.

#### **Hormonal Effects :-**

It exerts their influence on almost all types of cells in the body.

It influences cellular synthesis and secretion of endocrine glands and neurons.

It affects on digestive tract, and its products such as enzyme hydrochloric acid by gastric glands and bile cells.

It affects the integument. Mucus production, Peeling, Plumage, pigmentation and lactation production and secretion of sweat, sebum and milk is also controlled by hormones.

Production of hormones by the body controls the process of contraction, relaxation and metabolism of muscles in the body. Hormones control animal behaviours, also controls the processes of excretion and osmoregulation.

#### **Histology of endocrine glands:-**

It's important to note in their histological architecture some endocrine glands are defined from a single layer during their development while others arise from more than a single layer. Most of the endocrine organs are defined from the endodermis of the embryo. These include the thyroid, parathyroid and glands associated with the gastrointestinal tract such as pancreas. The pituitary gland is derived from the ectoderm. The adrenal cortex is derived from neural crest material which is also ectodermic in origin. The adrenal cortex and the gonad include testes and ovaries are derived from the mesoderm of the embryo. The pineal gland is nervous in nature and is therefore derived from the neural ectoderm. The thyroid and testes are tubular structures with a central cavity. All the endocrine cells have well-developed endoplasmic reticulum and Golgi complex required for the synthesis and packaging of the hormones. The histological characters of the cytoplasm of the endocrine cells also reflects the function carried out by the endocrine cells. Cells of the adrenal cortex contain granules in the cytoplasm.

**Thyroid gland :-** It is a dumbbell-shaped, lobed gland located in the thorax region at the root of the throat. The two lobes are almost symmetrical, lying one on either side of the tracheal tube. Each lobe measures about 5 x 2 x 2 cm. The two lobes are connected to each other by a narrow strip of tissue called the isthmus or middle lobe which crosses the 2-4<sup>th</sup> tracheal rings. The right lobe is bigger than the left lobe. A pyramidal lobe, which is smaller in size, extends from the isthmus into the neck. Accessory thyroid bodies are located beneath the main thyroid gland.

The weight of the thyroid gland varies up to 20 to 25 gm and is influenced by diet, age, sex and reproductive state of the individual. Thyroid gland is supplied by blood vessels supplied by the paired superior and inferior thyroid arteries and directly from the aorta. Venous blood is collected by internal jugular veins and the superior and inferior vena cava. Blood flows ensure adequate supply of inorganic iodine to the gland. It is supplied from the superior, middle and inferior cervical ganglia and parasympathetic fibers derived from the superior and inferior large splanchnic nerves. These nerves have control of the blood supply to the gland.

**Development:-**

It is endodermis in organ origin from the primitive foregut.

During embryonic development] the primitive thyroid gland arises out of pushing from the middle of the neck in front of the thyroid cartilage. It is derived from the fourth pharyngeal pouch, which gives to the lateral lobes of the gland. During intrauterine development thyroid gland shows the follicular structure of gland is evident by 12-14<sup>th</sup> week of the foetus.

**Histology:-**

The biosynthesis of thyroid hormones is carried out in the thyroid follicular cells of humoral aelni about 200 in diameter large follicles are found near the periphery of the gland while smaller follicles are arranged at the center. Each follicle is made up of a cubical follicles epithelium in the resting condition, the epithelium is low but the height is dependent upon the extent of stimulation of the gland thyroid stimulating hormones the low cubical epithelium becomes converted into tall columnar epithelium.

Thyroid follicles are measure about 20-150 um in diameter. A single layer of cubical follicular epithelial cells lines each follicular. It is surrounded by a basement membrane these are consisting of fine connective tissue fibers on which rest the bases of the follicular cells. These follicles are surrounded by a highly vascular stroma containing lymph channels and nerve endings. The follicular lumen is filled with a colloid material, the thyro globulin It consists of 75% of the colloid material is the main storage form of thyroid hormones thyro globulin constitutes about 75% of the colloid material.

Granular cytoplasm containing large number of mitochondria and distinct Golgi apparatus follicular cells facing the colloid material is thrown into a number of microvilli. Nucleus is situated in the follicular cells and the cytoplasm is filled with the well developed rough endoplasmic reticulum and Golgi complex cytoplasmic vesicles filled with the colloidal material are also found in the cytoplasm these on the basis of staining are of three types Eosinophilic, acidophilic and basophilic and mixed two types of follicular cells have been distinguished on the basis of electron microscopic and histochemical studies principal cells one contained small number of mitochondria and different proteases and oxidases required for the synthesis of thyroid hormones. Small numbers are scattered in large number of mitochondria and par follicular cells or C-cells-which secrets calcitonin.

**Functions-** They show iodide trapping they leads to from monoxide tyrosine (MIT) and diode tyrosine (DIT)

The thyroglobulin with T<sub>3</sub> and T<sub>4</sub> attached to it by peptide linkage. On the proteolysis which is under the control of TSH. These are bound by plasma proteins. It is mainly bound to thyroxin binding globulin (TBG) and T<sub>3</sub> is mainly bound to thyroxin- binding prealbumin (TBPA) Thyroid secretions are increased in cold environment. Thyroid hormones have a variety of effects on the cardio vascular system it stimulates Na<sup>+</sup>, K<sup>+</sup> ATP are directly and these by increase ATP turnover and oxygen consumption these hormones are used in the treatment of myxoedema in adults, cretinism and juvenile myxoedema in children. It increases the degradation of adrenal corticosteroids, other disorders including obesity delayed union of fractures, hypogonadal infertility, menopausal arthralgia, infertility menstrual disorders, nephritic syndrome refractory, and chronic constipation and refractory eczema.

**Toxicity-** It resembles the manifestations of hyperthyroidism, like hyperirritability, insomnia, nervousness, tachycardia, palpitation, arrhythmic angina pectoris, polyuria and emaciation. It leads to hypertension and gastrointestinal disturbances. Thyroidal preparations must be used with caution in patients with hypertension and coronary artery disease.

**Source.** Sea fish, used in goitre belts, Treatment.

- (i)      Lugol's iodine
- (ii)     Iodized table salt.

Hypersensitivity reaction like angioedema swelling of the larynx and multiple cutaneous hemorrhages may occur.

Radioactive iodine (I<sup>131</sup>), Propranolol, Guanethidine, thiocyanates, Perchlorates.

**Dosage-** Propyl thiouracil (Propacil) 75-100 mg every 8 hourly  
methylthiouracil (Methimazole) 50 mg every 8 hourly.

Methimazole (Tapazole) 5-10 mg every 8 hourly.

**Therapeutic uses:-**

To prepare hyperthyroid patients for surgery. It is administered potassium iodide 60 mg thrice daily is given for 14 days before operation. Gland becomes less vascular, reducing bleeding at the time of surgery combined therapy of carbimazole or propylthiouracil to suppress harmonic synthesis and avoid thyrotoxic crisis pump inhibition.

One pralidoxime is a recently introduced gastric secretory agent that inhibits the final common pathway in the secretion of HCl i.e. proton pump or  $H^+K^+$  ATPase pump.

It is also an effective anti secretory drug. It produces anti secretory effect for a very long duration normal secretory upon the treatment therapy miscellaneous agents.

The normal healthy gastric mucosa has a variety of defence mechanism against digestion by acid and pepsin- these are (a) gastric mucus (b) epithelial tight junction (c) high epithelium cell turnover and (d) Bicarbonate secretion.

Constipation is a condition in which defecation is delayed and hard stool is formed for various reasons. It may be due to consciously ignoring or preventing defecation or ageing, emotions, a low bulk diet, atonic or spastic colon, chronic constipation or drugs effects.

**Irritant cathartics :-**

These agents cause irritation of gastrointestinal tract mucosa and thereby increase reflex the peristalsis i.e. the motility to produce cathartic action.

Osmotic purgatives:- These agents act by increasing the bulk of intestinal content it increases by intestinal bulk by administering the materials which are not digested e.g. Cellulose, giving the materials which absorbs water and swells e.g. Agar

Giving the substances which prevent water absorption in the gastrointestinal tract e.g. Liquid paraffin employing the mucus also which by their osmotic properties. Draw fluid in the tract. E.g. Saline

Soluble purgatives are poorly absorbed from solutions retain water to increase in the bulk in the gut they act quickly and not injure the mucosa. Food evokes secretion in the mouth rich in mucus and enzyme ptyalin whereas lubricants of the food when secretion is reduced some common drugs are used for maintaining secretion in a normal manner. These drugs are called sialogogues and those inhabiting are known as anti-sialogogues e.g. Benzodiazepine sedative, cyproheptadine (5HT antagonist) and hypoglycaemic agents also increase appetite.

Gastrointestinal protectants and adsorbents these agents adsorb noxious substances such as gases, bacteria and bacterial toxins they protect gastrointestinal mucous membrane from the irritants by coddling it mechanically. These agents might absorb either anti-infective or anti-cholinergic material.

Prostaglandins in (diarrhoea), lactobacillus acidophilus (chronic diarrhoeal) antibiotic streptomycin locally chloromycetin, neomycin etc.

Pancreas zymase- cholecystokinase secreted by the mucosa of duodenum. When food material contains acid lipids, peptides and fatty acids come in contact with the duodenal mucosa.

Secretin, is also a polypeptide hormone it stimulates the secretion and release of the liquid non-enzyme component of pancreatic juices, and inhibits gastric secretion. Entero glucagon is secreted by the wall of small intestine and colon in response to glucose intake. It has strong stimulatory effect on the contraction of gall bladder.

Gastrone It is a substance of gastric mucosa it inhibits the secretion of gastric acid stimulated by histamine and gastrin. It stimulates the movement of intestinal wall. They are used in the treatment of severe diarrhoea only use of drugs like loperamide may be harmful if diarrhoea is due to bacterial or amoebic agents e.g. kaolin, pectin, activated charcoal, Bismuth salts, coconut shells, zinc chloride etc.

### III. REPRODUCTION

The ability of reproduce itself in all living matter is a cardinal characteristic of the conception until it has produced it kind. The term in which process resulted the formation of new individuals of some kind it results genetic, structural, and physiological variations.

Reproduction is a continuous and a renewal source for the genetic material which appears to have an inborn process of ageing. It is a process of increasing efficiency in the reproduction processes of vertebrates. So, it is a general tendency towards a reduction of the number of young and increasing parental care, so they are follows the stages of vertebrate evolution. They show the continuous adaptation with birds and mammals.

Patterns of Reproduction:- Two process of reproduction may occur these are asexual and sexual. By asexually mode two special sexes are distinct called gametes, fusion to form cell-structure the zygote which divides repeatedly to grow into a fully developed new-individuals sex organs in females have to perform the cyclic functions, like menstruation, and changes during pregnancy, parturition, lactation and menopause. The ovaries in women secrete one ovum every month, which may unite with the male sperm, to form a zygote, thus's woman's unit of life, with its genetic contribution. In males, only one internal secretion is for the production of sex organs, secondary sex characters and anabolic stimulation this is controlled by Gonadal tropic hormones of the pituitary as in women.

External secretion is production of spermatozoa which contains the unit of life with its genetic contribution.

An organisms that produces both types of gamete is called hermaphrodite. In most hermaphrodite the two gamete do not mature to the same time, so that self-fertilization does not usually occurs, cross-fertilization is common sexual reproduction is of the biparental but may also be coparental depending up on the species.

Parthenogenesis:- The development of an egg cell- into a new individual with out the participation of sperm cells from the opposite sex is called the part homogenise is e.g. Crustaceans, rotifers, insects. Not involve the fusion of gametes. Part homogenise is rare in the vertebrates. Eg. white two kegs

Gamogenesis and androgenesis:- Development of new individual takes place from the egg which is activated by sperm Tazaar but permeate zoon doesn't contribute org genetic material to the egg. Resulting imtrgos carries only maternal chromosomes. Eg. Fish, poecilla, ptinus, a latro beetle.

Androgenesis:- Is a veneers condition of gynogenesis . Chromosome contribution in the developing egg comes exclusively from the male it is called androgenesis.

Sexual reproduction:- Mostly multi cellular animals consist by the union of two dissimilar gametes, A egg nucleus with sperm nucleus to produce a single called diploid zygote which ultimately develops into a multi cellular organisms resembling two parents.

The production of gametes by organ is known as gonads. Also which produce sperm cells are called testes, while which produces egg. Cells are called the ovaries sexual reproduction involves two most fundamental events, meiosis and fertilization meiosis is the process by which gametes from the germinal epithelium of the gonads are formed and reassortment of different genes takes place in the formation of fertilization includes the fusion of two dissimilar genes in the production of offerings of sexual reproduction.

External fertilization in external fertilization there is no union between opposite sexes. Sperm and eggs may unite in the aquatic water

Internal fertilization :- Two opposite sexes of the some species undergo copulation, where fertilization takes place the fertilization is internal.

Embryonic development :- The animals which close eggs are oniporous major part of embryonic Development takes place outside the female body even though fertilization, has been internal but in viviparous reproduction.

Another types is ovoviparous reproduction large egg which furnishes food for the developing embryo but due to internal fertilization egg remains in the females until it hatches. Eg. Divest development

Reproduction in vertebrates:- All the reproduction phases are change due to environmental factors or change in adaptations thus internal fertilization, foetal membranes and control of temperature the physiology of reproduction is dealt with special reference to vertebrates.

Fishes:- Salmonids, trout, and salmon produce a large number of yolk eggs. So- stimulus for ripening of gonads is supplied by pituitary hormones depend on the secretion of rhythmic environmental changes. All fishes show anti-mutant sparing (against the current) migrations.

So they actually release eggs up-current of the feeding grounds which allow larvae to drift down towards the latter. Some nest fishes secure their eggs to prevent them from drifting downstream eg. Cod, stick back. There the species of catfish and species of sea-horse, which retain their young in their mouths or in the brood pouches eg. Guppy fishes are or in elasmobranchs.

It involves internal fertilization helped by claspers of the male. And the female lays a small number of eggs with a quantity of yolk produced. In the dogfish, scyliorhinus conical internal fertilization is followed by the recreation of a protective case around the eggs and they are attached by their threads to objects on the sea bed. Eg. Mustelus vulgaris its developing embryos take much of the uterine secretions contain urea, forms an important part of the embryo.

Eg. Mustelus vulgaris is true viviparous though true fish form placenta which secrete nutritive fluids. Loss of lines weight does not occur in mammals during gestation.

Amphibians :- They are stimulated by day light and other factors. Frogs endocrine controls reproduction, acts during hibernation mostly amphibians frogs return to water for reproduction and they migrate several miles to find their original spawning ground. Croaking of the males frogs, enlarged vocal sacs of the females are two of the stimuli leading to mating accomplished by males grasping the female which has nuptial pads. Fertilization takes place externally and sperms must penetrate the eggs before its coating of albumen swells. Sperms pass down to the testes via the anterior part of the kidney and the wolffian ducts both sexes name a cloaca where genital as well as excretory products are passed to the exterior once the eggs are passed that egg load have limited protection of their albumen coating and the fact that the black pigment contains bitter taste for amphibians or tadpoles are well adapted to life in water having respiratory and locomotor systems as well as sensory adaptations such as the lateral line. There are a good number of exceptions. It is an external feature of the reproductive system. Eg. Female moths toad clog eggs in their packets for fertilization.

Reptiles Rapid colonization of the land achieved by the reptiles we see many changes from the amphibian condition fishes and amphibians and are passed as an amniotes they the amniotic characters of the reproduction mechanism of reptiles, birds and mammals which are passed as amniotes.

Amniotic is an extra-embryonic membrane evolved in conjunction with shelled eggs and it facilitates the embryo to develop within a stable fluid environment. In conjunction with the amniotic a further extra-embryonic membrane the allantois develops. It has a role in respiratory changes and excretion there is yolk enclosed in a sac. Providing raw material for the developing embryo. Albumen of eggs contains water and porous shell allows gaseous exchange, so the level of reptiles a great deal of provision is made for both the nutrition and protection of the developing offspring.

Eg. Snakes guard their eggs and turtles and crocodiles, among others bury eggs to provide them with a uniform and protected environment lizards and snakes have developed viviparity but there is no exchange of materials between Mother and offspring.

Birds :- Eggs of birds are some in appearance shows wider range of colour and shape birds open nests usually have camouflaged eggs (eg. Planes) while some have concealed or domed nests have white eggs (eg. out) there is a general tendency to reduce the number of eggs laid in the more advanced birds one but on the whole the number of eggs related to the number of eggs of offspring that the variation is due to species of nesting, late tube and immediate ecological conditions. During their reproduction phase of male and female parental care is well-developed they do the sub care of their young ones. Birds being homoiothermic. They maintain their at constant

temperature. Female assist for construction of nest male develops the construction of increased supply the akin as well as losing feathers from her breasts. She also drives to incubate which is very strong and can be clearly seen in the behaviour of a 'broody hen' after hatching the young are usually cared for both by parents the gap of the fledgling's beak acting as the releaser to the parents, fending responses. Hormone of feet is by the pituitary lactogen which causes the secretion of milk from the regurgitate's crop.

Mammals :- The cerebral hemispheres and complex behaviour, Mammals owe their success to the efficacy of their reproduction system, now the class of vertebrate of the offspring, exceedingly highly developed.

Egg similar goes through a similar gastrulating to the reptile and bird egg. Is quite small in the placental mammals. so the shelled eggs of the primitive monodramas are quite large mammalian eggs have reduced yolk they the tissues oviducts are well prepared for specialized and muscular region uteri sis perforated in the developing embryos. Now the wall of uterus establishes contact with the foetal membranes of the developing embryo placenta serves as physiological function and forms by the extra-embryonic membrane allantois grow out from the foetal endoderm and fusing with chorionic give rise to chorioallantoic placenta, inner wall of chorion and the outer lining of the allantois are lined with mesoderm and in this fold resells arise forming the umbilical artery and vein. Foetal and maternal circulations countess current exchange system may develop food, water and oxygen are passed from the maternal circulation and carbon-dioxide metabolites are returned. Mammalian orders have a tendency to reduce the layers involved in the placenta. Maternal epithelium, connective tissue and endothelium are absent in the placentas the uptake of ions and presumably other substances is greatly each onced they are more efficient than the placental with many layers. The intervening layers are lost during development in various mammalian orders to increase the intimacy between maternal and foetal tissues and to increase the efficiency of functioning of placenta.

Maturity goes to be during age. This is called puberty the reproduction functions commence reproductive periods extend throughout the life. It ends when at Ropak changes occur and gradual oppression of sexual activity 13 to 15 year puberty occurs earlier in girls than boys. Secondary sexual characteristics may develop on the pubic region occur.

The placentas depends upon the type of sexual cycle fall into categories (i) oestrous and (II) Menstrual the first category include those which breed only in specific period of the year when ovulation takes place and the animals break the desire of sexual mating the breeding period is followed by resting phase. Mostly animals may breed once. Twice or many times. Breeding period continued by resting period oestrous animals may be mono, bi or polyestrous second category goes on annual breeding ovulation occurs every month periodically from the two ovaries breeding phase may follow by pregnancy, discharge of unfertilized ovum the endometrial tissue and blood in the form of menstrual fluid.

Pinnacle body Pineal is a small cone shaped pineal is situated beneath the corpus callosum between the two superior calliculi originates from the third ventricle. The cavity of the diverticulum later on gets obliterated by logically it consists of parenchyma cells. Which are large with eosinophilic cells and neuralgia cells. Atrophy at the age of seven years and is filled with calcium and magnesium phosphates and carbonates. Its function is still unknown and represents possibly dying gland.

Thymus:- Thymus is particularly an endocrine gland and partly lymphoid gland and is situated below the thyroid it gradually enlarges until puberty and then atrophies. Now initially thymus consists of number of lobules. Each of which consists of outer cortex and medulla.

Functions:- It controls the growth of the skeleton

It helps in the development of sex-glands control of secretion:- Thymus activity is accelerated by anterior pituitary and thyroid where gonads and adrenal cortex are known to inhibit its activity.

Placenta:- The fertilized ovum enters the uterus and gets its way into the hyper trophied endometrial and the ovum embeds in the walls of uterus. That portion of mucous membrane which intervenes between the ovum and the muscular layer of the uterus undergoes extensive proliferation. And forms placenta. It is a developing connection of embryo and the maternal tissue. It develops because of two stimuli one from the corpus luteum progesterone and other developing embryo others placenta consists of both maternal and foetal tissues.

Endocrine function of placenta:- Both estrogens and progesterone's have anti androgen activity it is only for target ongons.

The secretion is on the late pregnancy. Phase and of its bilateral overiceto my and it produced a third harmonic while is known as the chorionic gonad tropic some effect on luteinizing harmonic. It maintains the function of corpus lustrum and placenta is capable of producing estrogens and progesterone which are necessary for the maintenance of placenta. They are also con troinlicated in patients with enlarged prostate eg. Tes to sterna therapy mifepristone has effects onovalabon it impairs development of secretary endo metirtum and produces menses.

Function :- Growth and development of vagina uterus and breasts.

Growth of axillary and pubic hair

Pigmentation of genital region

Growth of uterus during pvegnacy. During proliferative stage uterus devdop and menstval cycle depends on the secretions of estrogens from the ovaries.

Growth of skeletal muscles is also stimulated by oestrogens.

Anti estrogens are compounds that inhibit estrogen action by competing for its receptors useful in the treatment of breast and uterine cancer. Eg. Clomifen, Tamoxifen.

During the meta bolic processes progesterone gets reduced into an active derivative known as pregnandial. Appear in the cerine sodium-pregnadiol glucuronate. Period duration of progesterone is a week before menstruation and ceases before the period storts.

At the one set of pregnancy maximum sevetion is eight or ninth month as it is produced by the placenta in large amount and concentration falls before the parturition or delmerg the knowledge of biological actions of estrogens contraceptives and hormone replacement therapy (HRT). This affect on past menopausal women, bone mineralisation, gone dectomy.

Ovary:- The female sex-Sterols secreted from ovaries. The oestrogens ( estradiol from ovaries) have 18 carbon atoms and progesterone (from corpora lutes of the ovaries) having 21 carbon atoms. The ovaries lien the abdominal cavity on ethos side hanging from the broad ligament by a fold of peritoneum called the mesovartum.

It shows venation on life most active at puberty and breeding period. The development stages of the ova may be seen at all the phases of life. The ovary consists of a lager of germinal epithelium stroma consisting of connective tissue developing the folides and the bundles of interstitial cells. It secretes a estrogens Harmon. Corpus lustrum developed from the ruptured follides often ovulation they produce progesterone.

Estrogens- are the hormones which producer oestrus in orari ectomined rats or mice. The are drined from supra-renal cortex, placenta and few leydig cell of the testis.

#### **Classification of estrogens:-**

Natural estrogens- eg estradiol, estrone, estriol semi-synthetic estrogens eg. Ethingles trodid mestroral quinestrol.

Synthetic estngens eg. Diethglstibes troll. Chlorotrianisene, metallenoestril.

Non steroidal agents with estrogenic activitg eg. Dienestrol Benzes helestrol methestrol . Metallinoestrol chlorotrianisene.

The FSH timalates the metabolic actively of the sertoli cells in the somniferous tubules. And promotes spermatogenesis. The ICSH promotes the development of the internal cells of leydig which syntheses and secrete testosterone. The servomechanism leads hypothalamic- pituitary There is need of physiological levels. Development of accessory sex organs and the secondary sexual characters less potent is and rastendione and dehy droepan drosterone. Are secreted by adrenal cortex and the ovary which are bio transform as in the lives and kidney to testosterone. Sexual maturation concerned androgens in malls. Eg. Facial hair, musculanity, boldness, texture of the skin. Lower pitchedraice

**Function:-**

Indies, secondary sex character of males (body hair, deep voice, penile growth, and body hair in females). Supports spermatogenesis.

Influence sexual and aggressive behaviours in males and females.

Regulate secretion of gonadal trophic hormones for muscle metabolism. Increased respiratory rate and bronchodilation stimulate respiratory exchange of gases. Spleen contracts and releases erythrocyte-rich blood into circulation.

Piloerection (goosebumps) and resins appearance.

Control of Adrenal medulla sending

Adrenal medulla produces no hormones in resting condition. Verifies of stressful conditions stimulus the secretion.

These as my asthenia, hyper tension, psychosis, diabetes mellitus, osteoporosis, glaucoma, pregnancy, herpes simplex keratitis and infections, peptic ulcers, fungal and exanthematous diseases like chickenpox.

Testes:- The male sex hormones or androgens are mainly secreted by the testes, and adrenal cortex and the ovary. Each testis consists of large numbers of seminiferous tubules and many other islets of interstitial cells which secrete the male hormone the most potent natural anabolic is testosterone, and is secreted by the testicular interstitial cell of Leydig.

Androgens:- At puberty is an increased secretion of pituitary gonads (follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in males. Collagen diseases are marked by defects in connective tissue protein (collagen) in the joints, various organs, and deeper layers of the skin.

Allergic disorders used in atopic and contact dermatitis, allergic rhinitis, allergic conjunctivitis, certain allergic skin conditions. Corticosteroids are effective in psoriasis, seborrheic dermatitis, pustular psoriasis, and acne dermatitis, herpetiformis, and pemphigus.

Ophthalmic diseases include iritis, iridocyclitis, chorioretinitis, uveitis, corneal ulcers and secondary glaucoma. Hematological disorders used in the management of blood dyscrasias including acquired or auto-immune haemolytic anaemia and idiopathic thrombocytopenia or drug-induced thrombocytopenia, aplastic anaemia, and aplastic anaemia. Used in liver diseases like chronic hepatitis, cirrhosis of the liver with as well as those which are refractory to diuretic therapy alone. Acute infectious diseases, massive doses of steroids used in the treatment of septic shock and toxic effects used in cases of gram-negative septicemia and anti-toxic shock and to control complications of tuberculous meningitis, acute pneumonic viral infections.

Sympathetic discharge:- Adrenal medulla do discharge of adrenal or noradrenalin prepared actions of animals for fight. Blood pressure and cardiac output increases. Blood diverted to skeletal muscles and glycogenolysis and lipases provide fuel.

Respiration and skeletal muscle :- Bronchioles are dilated, secretion of mucus is reduced and mucosa undergoes shrinkage. Respiratory and heart rate are increased. On set of fatigue, deluged muscular excitability and contractility is increased.

Metabolism:- Adrenaline and norepinephrine (noradrenalin) stimulates glycogenolysis in liver muscle and lipolysis. Heat production is increased and tissues degrade to oxygen consumption. All these are B effects. Liberation of glucocorticoids, Now blood glucose level rises due to gluconeogenesis and A.C.T.H production is increased.

Other Effects:- Sweating increased sweat glands are stimulated. Adrenocortical insufficiency is due to inadequate ACTH secretion. Acute adrenocortical insufficiency (Addison's disease) is characterized by extreme weakness, dehydration, hypotension, and gastrointestinal symptoms.

ACTH is released from the pituitary, causing adrenal hyperplasia, and hypersecretion of steroids also occurs from an alternate path.

In conditions like Cushing's syndrome, adrenogenital syndrome and adrenal virilization the aim of therapy is to suppress pituitary ACTH production which may be excreted in urine or oxidized ultimately to mainly metanephrine and excreted in urine.

Actions of Adrenaline or non-adrenaline:- There poetically useful anti inflammatory activity has been intensified and the sodium retaining of mineral corticoid activity has been minimized. Therefore naturals cortices steroids can be obtained as such from of steroid animals synthesed from chalice acid, attained from cattle, or from steroid sapogenins like diosgenin.

Both adrenaline and noradrenalin are known as emergency hormones released under conditions of "fright, fight or flight.

These are associated with the sympathetic nerve-system

Adrenergic receptors:- The hormones are bind to specific receptors located inside the cells the adrenergic receptors. These receptors are of two types. A and B. Receptors respond to adrenaline and U-actions involve contraction of smooth muscles. B receptors responds to adrenaline and involve relaxation of smooth muscles or metabolic effect U-actions are due to inhibition of adenyl-cyclase while B actions involve activation of enzyme U-receptors are excitatory whereas B receptors are inhibitory.

Heart and blood vascular system:- Adrenaline and nor-adrenaline increase heart rate by stimulation the sino-auricular node myocardial contractility and excitability are increased as a result of which the force of contraction is increased contraction of bundle of his is also increased now the B-effects are increases cardiac-output. The action of nor-adrenaline increases the vasodilator on of the coronary blood vessels and vase constriction of the peripheral resells. Now the adrenalin modals B vasodilation of the skeletal blood vessels. The Blood pressure becomes increases and becomes quietly normal.

### **Adrenal Medulla**

Morphology:- It is ectodermic in origin. It is derived from the precursor of the cells of sympathetic ganglion cells that separates from the neural crests. Cells these occurs in two directions some of them give rise to sympathetic going fibers cells are stained yellowish brown with phaeochromocytomas whereas are stained in yellow brown with chromic acid they are known as chromaffin cells.

Metabolism of catecholamines

Catecholamines are derived from the amino-acid phenylalanine. The amino acid in turn hydroxylated to form amino acid tyrosine. At the time of blood circulation the adrenal medulla secretes tyrosine. The adrenal medullary cells. Tyrosine hydroxylase converts dihydroxyphenylalanine and then to dopamine by the action of aromatic L-amino acid decarboxylase. From the adrenal medullary cells dopamine enters the dense core resides in which medullary cells cubs of cytoplasm and converted into norepinephrine by dopamine cells, norepinephrine passes into the cytoplasm under methylation catalyzed by the enzyme phenylethanolamine N-methyl transferase and norepinephrine undergo rapid degradation after the release. During course of circulation the two hormones are removed on the noradrenergic normal endings or other tissues or the metabolized into blood tissues by an enzyme catecholamines or methyl transferase. The products formed are metadrenaline or nor metadrenaline.

Regulation of secretion :- Regulation and synthesis is done by glucocorticoids. Is regulated by the hypothalamic - pituitary- adrenal axis circulated by ACTH and CRH.

Circadian rhythm and plasma control.

The secretion of adrenal gland (cortical) and anterior pituitary (ACTH) hormone doesn't occur in steady state. It follows diurnal rhythm. Which is a 24 hour cycle human anterior pituitary in the usual sleep/awake cycle starts producing larger amounts of ACTH after midnight. Peak 6.00AM to 9.00 AM. The blood steroid level is the lowest in the late evenings.

Stress:- By the administration of appropriate physiologic doses of glucocorticoids.

Hans Selye suggested the concept of stress is an agent which attempts to alter the internal environment. Eg. Physical injury, infection, high or low temperature, radiation, injury, neurons, clear fatigue, emotions, noses, environmental pollutants. It generates two types of syndromes. Eg. Local adaptation syndrome or general adaptation syndrome. These diseases respond to glucocorticoid therapy. Under severe stress the cortical secretion may be raised up to ten-fold of the normal daily output.

The cells of the adrenal cortex are arranged in three zones: (I) the outer zone glomerulosa (II) The inner zone reticularis. They work as single functional unit and secretes cortisol, corticosterone and small quantities of male and female sex hormones. They are formed by dark brown chromaffin cells which secrete catecholamines. Adrenaline and noradrenaline.

**Hormones released:-**

Three main hormones secreted by the adrenal cortex.

- Glucocorticoids (cortisol), Cortisol has anti-allergic effect
- mineral corticoids aldosterone, deoxy corticosterone,
- Sex hormones progesterone is formed, trace of oestrogen e.g. Homeostasis.

**Biosynthesis:-**

All steroids are derived from cholesterol derived from acetate or dietary source (conical fats) now cholesterol is converted into pregnenolone. Steroids derived from pregnenolone are oestrogens, the progestogens, the androgens, and the corticosteroids. Three classes are regarded as steroids- C-21, C-19, C-18. (Progesterone) (androgens) (Oestrogens).

Synthesis is controlled by ACTH.

The enzyme 3-Beta-hydroxysteroid dehydrogenase is involved in the conversion of pregnenolone to progesterone and 17-hydroxy pregnenolone or 17-hydroxyprogesterone.

**Adrenal cortex:-**

**Morphology:-** Adrenal glands are composed of two. These are triangular flattened cap-like structures situated on the dorsal surface of the kidney. The supra-renal is derived from its position occupied size and 8-10 gm in weight. A connective tissue capsule surrounds the gland underlying the kidney. Position occupied by the gland varies and shape from species to species. The right gland is larger than the left. This gland consists of two parts (i) cortex (ii) medulla. The two parts differ in their embryological origin, structure and function.

These are highly vascularized receiving about 6-7 ml of blood per gm of tissue per minute. Now blood carried by the branches of the renal artery and in the renal veins enters the renal vein. Collecting blood from the adrenal glands. Blood vessels enter from the surface to form a rich vascular plexus in the cortex from that side blood enters the inner medulla.

**Development** It is mesoderm in origin and it is derived from the ectoderm covering the anterior part of the mesonephros. At the time of development of embryo, an inner layer of provisional cortex is formed from groups of eosinophilic, large, granular, cells. Now the permanent cortex is well developed at the maturity and undergoes degeneration while the permanent cortex starts to develop and envelops the medulla.

**Histology:-** Polyhedral parenchymal cells forming two-cell-thick cords running radially from the cortex to the medulla. The blood capillaries form a close network around the cords ensuring blood supply to each other. They are characterized by well-defined nuclei with Chondri and Golgi. All insulin preparations are usually given subcutaneously. Only insulin injection or regular insulin can be given intravenously e.g. Atropine (nusol), ropine and Metformin.

Adverse reactions to hypoglycemia, insulin allergy, insulin resistance, insulin neuropathy, insulin resistance, obesity.

Therapeutic uses, diabetes mellitus, schizophrenia, myorelaxants, Anorexia nervosa, burns.

**Treatment:**

Insulin was first discovered by Banting in 1921 used in the treatment of diabetes mellitus in 1922. It was completely synthesized in 1966. It is a polypeptide with a molecular weight of about 6000 consisting of alpha and beta chains of 21 and 30 amino acids linked by two disulfide bonds. Connecting Peptide (c-peptide) forms e.g. Pancreas of cattle (bovine).

The pig (porcine) beef or pork insulins contain male and human insulin. (low antigenicity) is produced by E. coli by recombinant DNA technique or by chemical synthesis of porcine insulin, replacement of one amino acid is different from

human insulin. The normal pancreas contains about 200 antis of insulin secretion to man so units daily metabolized in the lines.

#### **Transport, metabolism and Excretion :-**

Rapidly proteolysed in the gut, It has to be given parenterally, usually by subcutaneous injection. Insulin circulates in plasma in a free state and negligible fraction is bound to the plasma globulins in liver and kidneys. The disulphide bridges are split in the liver by the enzyme glutathione insulin transhydrogenase (insulin's). Which breaks insulin molecular into A and B chains. It is bound by muscle and fat tissue no- free insulin is excreted in the urine and faeces. The plasma half life of intravenously injected insulin is less than 1 minutes in man.

#### **Pancreas/ islets of Langerhans:-**

Morphology:- endocrine function are performed by the islets of Langerhans. It is leaf like situated between stomach and duodenum. They are small or highly vascularized masses of cells spread over the pancreas, on entire organ.

Histology:- It may be grouped on epithelial cells among exocrine pancreatic acini. It is of four types of secretory cells.

- (i) Alpha (A) Cells
- (ii) Beta (B) Cells
- (iii) Delta (D) Cells somatostatin
- (iv) PP (E) Cell, secretes pancreatic polypeptide

The insulin-secreting beta cells are most numerous (up to 70 to 80% of islet cells). Alpha cells comprise 20 % of cells D and F cells of 4 percent and less than 2 percent. The physiologic role of glucagon and insulin in the regulation of intermediary metabolism is well established. Diabetes mellitus is a chronic disorder resulting from insulin deficiency, characterized by hyperglycemia, altered metabolism of carbohydrates, proteins and lipids. Metabolic abnormalities lead to polyuria, polydipsia, polyphagia, and fatigue. Long-term complications include, proliferative retinopathy, myocardial infarction, polyuria, and uremia, including gangrene.

Hypersensitivity may occur and leads to demineralization of bone and metastatic calcification in the kidneys (hepatitis, nephropathy, uric acid) the development of anti bodies may cause into tolerance and resistance.

Calcitonin or (Thyrocalcitonin) is a small polypeptide mol. wt 3600 with 32 amino acids synthesized by secretory cells. It produces hypocalcemia by inhibiting bone resorption, and by promotion of urinary excretion of calcium and phosphate. It has no action on transport of intestines. Salmon calcitonin 40 to 160 units daily by subcutaneous, intramuscular or intravenous injection. Human calcitonin is given in a dose of 0.5 mg/d.

Dihydrotachysterol is used to correct hypocalcemia of hypoparathyroidism and to treat acute, chronic and latent forms of parathyroid tetany. Etidronate (didronel) is a non-hormonal substance (bisphosphonate) that reduces the rate of bone turnover. It is related to pyrophosphate which has a role in bone mineralization. It is used in treatment of Paget's disease, malignancy, and reduction of heterotrophic bone resorption. Due to spinal cord injury.

Hyperparathyroidism- hyperfunction may be due to a diffuse hyperplasia of the glands, adenomas, carcinoma and aberrant production of PTH. Symptoms include polyuria, polydipsia, disordered cardiac rhythm, renal calculi and subperiosteal bone resorption, with hypercalcemia and hypercalcemia.

Structure of parathyroid gland:

Calcium metabolism in the body is mainly governed by two hormones: parathyroid hormone (PTH) and calcitonin from the parafollicular cells of the thyroid gland. The chief physiological role of PTH is the maintenance of calcium homeostasis required for normal body function. On removal, parathyroid gland requires in a progressive hypocalcemia, tetany, convulsions, and death.

Action of PTH increases the plasma calcium concentration and lowers the plasma phosphate level.

Its effects are exerted on the Ca++ transport, in the bone, kidneys, and the intestines. It stimulates a dehydrogenase activity in the bone and kidney cells.

Toxicity:- over dosage with PTH causes hypocalcaemia Overdosage with PTH courses hypocalcaemia manifested as weakness remitting, diarrhoea lack of mesek tone.

### **Parathyroid gland :-**

Morphology:- In the posterior surface of the thyroid gland it consists of two pairs of small bodies, oval in shape and ring embedded in the posterior surface it assume 6x6x3 cm. in size total weight is 23 to 500 mg. gland associated with connective tissue it consists of columns of epithelial cells which inters read with blood compallarles and nerve endings.

Development:- Two upper parathyroid glands are farmed from the fourth branched pouches while the lower pair is formed from the their branched pouch.

Histology:- There is the presence of masses or cdumns of epithelial cells with blood sinuses in between them. These epithelial cells comprises two types chief r principal cells. It is small in size no- granules, cytoplasm is clear but contains glycogen nucleus is large and vascular majority of the cells populate and sustain throughout life. These cells become enlarged cytoplasm becomes race dated chief cells commonly known as water ckar cells cytoplasm studies shows they are of two types light chief cells or dark chief cells. Few and rich in secretor granules containing glogcogen in cells in contrast ot chief cells, oxyphid cells are larger in size and few in new bar. Granules can be stained in acidic dyes. It contains fatty granules and globule. Adipose tissues inters read and sometime colloid vessels.

Regulation of digestive secretions and motley of gusto-intestinal tracts are controlled by nermous bio-chemical and mechanical factors nervous bio-chemical and mechanical factors increase in hyderchloica acid disturbances and needs symptomatic treatment.

Drugs used in peptic ulcers

- (i) Gustier antacids
- (ii) Anti- secretary druesgs
- (iii) Miscellaneous agents including mucosal protective agents.

Anti secretary agent:- These are the drugs that suppress HCL secretion by blocking receptions (muscormic receptor blockers H<sub>2</sub>- receptor blocking or postreceptor mchonisms like H<sup>+</sup>, K<sup>+</sup> ATPase of proton pump. These enzyme is location on the cell membrane gos trin is released from antrol mucosa of by food alkaline P<sup>H</sup> in the stomach and digested protein are powerful stimuli for gas trinrelease harmones gastrin provides a feedbook contral on Hcl secretion. When P<sup>H</sup> of stomach is elenaled by food gostrin is released and comersely release of gostrin is inhibited when stomach attains low P<sup>H</sup> ant cholinergic action eg. Dryness of mouth, urine retention etc. furthers ant cholinergic agents dely because the food remains for longer time, in stomach.

### **Gastro-intestinal harmnes:-**

The missal lining of stomach and intestine is the largest and most diverse gland of the body number of endocrine cells not in a copact grouped in endocrine tissue best scattered over mucosal cells. These cells secrete specific cells by diffusion and not through circulation. Mostly gastro-intestinal hormones are also secreted by other areas. These harmones are control the motility and secretary activity of the digestive system and produced in response to specific chemical substance in got content mostly they are polypeptides.

Gastrin:- gastrin occurs in two forms gastric 17 secreted by pyloric ontrum and gastrin 34 produced by upper small-inters time gastrin 17 contains seventeen amino acids. While gastrin 34 contains in addition to the seventeen amino acids where as gastrin 34 contains in addition to the 17 amino acids at c terminal end of gastrin 17 anethes 17-amino acids thus malcing a total of 34 its half life is six times mare than gastin 17 but its action is six times less effective.

From the pyloric ant run two gastrin have been isolated gastrin without sulphate anf gastrin II with ithered sulphate. These two gastrins contains seventeen omino acids there biological activity of first five amino acids and any nthetic product with all the physiological action of gastrin pentagastrin.

The gastric ulders maybe produced due to

- (i) Abnormality in gastric acid secretion
- (ii) Abnormal mucosal deference.

**Estrous cycle:-**

At the certain periods of the year female will receive the male now the mating seasons are the characters ties of animal breeders as heat and by physiological as oestrous. The sexual phases immediately preceding estrus are called postures. The changes of swelling and increases vascularity of the vulva and vagina. Uterus become larded glands hypertrophy. At this time bleeding occurs from the uterus and appears externally. These changes of postures are propitious in nature female organs being into a condition suitable for reception of the male and the fertilization of ovum.

The growing follicles in the ovary undergo maturation estrus is the period during which ovulation occurs and the female mate with male the changes during postestrus are anticipatory to the implantation of the fertilized ovum in the uterus the uterine mucosa hyper trophy and its glands show an increase in secretory activity. During postestrus the corpus luteum develops the uterine changes in postestrus resemble those taking place during pregnancy which, indeed are an extension or continuation of the form thus the changes at the different phases of estrus are as:- proestrus-A strong wineous fluid is secreted in uterus and vagina become congested. It is a tendency of estrogens secreted by maturing follicles vaginal smear shows large number of mucus cells broken off from the proliferating vaginal epithelium.

Estrus-(heat period)- During the period of heat, only female receives male. Congestion of the uterus becomes maximum. The vaginal epithelium thickens further and the superficial layers are fully keratinized in pregnancy is possible. If fertilization takes place, placenta forms and pregnancy begins. If not, it passes on to the next phase vaginal smear shows large number of keratinized cells.

Postestrus changes:- changes in the previous stage proceed still further due to the action of progesterone secreted by the newly formed corpora lutea in the absence of pregnancy corpora lutea degenerate and the subsequent generation follows arise. Eg. Monoestrous animals (bitch). The hypertrophied uterus breaks down and is discharged, vaginal smears show large number of neutrophils.

Anoestrus:- The resting asexual period in monoestrous animals last up to the next mating season and is known as anoestrus in polyestrous animals the resting interval is short up to the next cycle which is called diestrus. In rats last for 4-5 days vaginal smears show degenerating leucocytes and denuded epithelium.

**Sexual reproduction in males:-**

The structures involved in (sex characters) in reproduction include mainly as geneses i.e. testes in the male and ovaries in the female. Gametes or sex cells also secrete hormones that are the functional sex accessories induce structures which are involved in the transmission of gametes or the developing zygote from the site of its origin to exterior. In male the sex-accessories epididymis away from the testes are a pair of vesicles which provide essential nutrients, a single prostate gland that serves to lubricate the passage way to the outside of the body through penes, A pair of Cowper's glands which are also lubricating the passage in function. And penes may be erected by the circulation to facilitate placement in to the vagina of the female for the ejaculation of sperm.

In female, the sex accessories include a pair of fallopian tubes from the ovaries at the proximal ends enter the uterus, A single uterus a vagina that seems to receive sperms. One pair of mammary glands which produce milk, for the new born and but buccal glands secrete a fluid similar to that of the gland, connected to the urethra of the male.

**Secondary sex characteristics:-**

These include more or less external specialization which are physical difference between the opposite sexes. They serve sexes together for mating to provide for the protection or nutrition of the young the important secondary sex characters are the following.

- (i) Males have muscular body in comparison to female.
- (ii) Mammary glands are well developed in females and the rudimentary in males
- (iii) (the pitch of voice is high in males than females.
- (iv) Males have well defined organs as, hairs on their body. In females the hairs are present sparsely.

**Female reproduction organs:-**

Sperms are produced in the testes. Testes are two oval oldies and are suspend in a sac hanging from the lower wall of the abdomen, the scrota. Each testis is composed of coiled annatto massing somniferous tubs lined with epithelia cells and produce sperms cells. The interstitial cells of the testis dig around the tubules produce the male sex hormones, testosterone, which promotes the development of accessory gland and contort. Male secondary sex-characteristics. As, sperms are released into the interior of the tubules they are carried by ciliary action to the epididymis which lies on the outsides of and partially encircling the testis and epididymis together constitute testicle the sperms stored, so become motile in nature, epididymis connects the as deferens. It is a muscular tube that leaves the scrotum by the inguinal canal and empts into the urethra. The duct leads from the bladder the terminal portion of each was deferens enlarges to form an ejaculatory duct capable of contraction and expulsion of the sperms which are stored there. Ejaculatory duct before connects to urethra a glandular seminal vesicle empties three. It also secretes a viscous fluid which is expelled along with the sperms. The mixture of the fluid and the sperms is known as semen.

Another pair of glands, cowpeas glands attached to the urethra below the prostate gland. Their secretions are also alkaline and are used as lubricant for the same. The secretions of the prostate and coopers glands suspend the sperms motile and newish than and neutralize the normally acid environment of the urethra and of the female reproductive tract to a PH more suitable for sperm survival. From the musculature urethra communicates with the extroversion of the body, the penis. It consists of columns of spongy tissue, the corpora cavernosa, surrounding the urethra, along a skin layer. Tip of the penis enlarges slightly to form glands which is covered by a fold of skin, the prepuce, function of penis is to deposit the semen in the genital tract of the female.

**Erection of penis:-** Associated with sexual stimulation. It is caused by dilation of the blood vessels carrying blood to the spongy tissues resulting in the called of blood within these spaces as the tissues the testis close to the body. The muscles surrounding the bulb are stimulated. They contract and propel the semen out through the urethra and produce some of the sensations associated with organism.

**Ejaculation:-** Stimulation leads to can traction of muscle present in the scrotum, railing the testes. Close to the body epididymis and vas deferens. These contraction more the semen in urethra finally muscles surrounded the bulls are stimulated. It contract and propel the semen out through the urethra and produce some of the sensations associated with organism.

**Semen:-** At the time of insemination. It contains sperms cells and secretion of seminal rest cells prostate gland and cowpers gland and also discharged per ejaculation raris from 2.5 to 3.5 ml.

**Spermatozoon:-** The spermatozoon consists of two main parts, head and tail. Tail divided into neck mid piece. It is about 0.05 mm in length. It is motile in nature and enzymes are responsible for its motility are located in the mid piece. Head of spermatozoon is a sperm -shaped structure bounded by plasma- membrane at the other end it has a cup-like structure called acrosome made up of geology apparatus. It contains hydrolytic enzymes and plugs on an important role in the penetration of sperm in the ovum. Head contains a well condensed nucleus. And a very little cytoplasm. Head is followed by short neck. Neck consists of controls a proximal contras. The two controls lie at right angles to one another. The proximal controlled has no active function. But is a potential activist within the egg during the first cleavage division of the fertilized. The distal contrail serves as basal body for tail neck followed by mid-piece composed exclusively of mitochondria. Aggregate at the based and forming a continuous spiral mitochondrial (A-Tapes) provides energy to the sperm tail for its motility mid-piece is followed the principal place (which ultimately ends in the end piece). Now principal place the end-place of the fibres system is reduced to the axial complex of the control fibers. Surrounded by the ring of nine peripheral fibres.

**Numbers:-** nearly 300 to 400 millions of sperms cells are present in the semen of each ejaculate of a normal young adult male. Only of these can fertilize the egg cell. In males 35 millions sperms/ml. of semen are generally sterile.

**Female Reproductive organs:-** Female reproductive organs include a pair of ovaries, a pair of fallopian tubes and the uterus or the vagina.

The ovaries are paired small almond like flattened bodies lying the sides of vertebra of Colum behind the kidneys in the phasic cavity. Each ovary is attached to the and over ion ligament, it composed of stream of fibre connection tissue and is lined by a germinal epithelium which proliferate the us ands of primordial follicles during the embryonic life of individual.

Each ovary is roughly differentiated into an outer cortex and an inner medulla.

In a mature ovary contains follicles corpora lutea in the various stages. It consists of large blood vessels of the organ. One cell of the mass of epithelial cells give rise to an immature ovum or oocyte.

The remaining cells surround the ovum or oocyte as sac or follicle called follicular epithelium or granulosa consist of primordial cells.

Now they become organized in a connective tissue layers, the theca externa and the theca interna.

Puberty:- Graafian follicles reach maturity at the time of puberty in young girls. It is the beginning of youth, when onset of sexual maturity may functionally organize. At this time the various morphological, psychological and endocrine changes take place in the individual. Secondary sexual characteristics marked during the growth as well as accessory sex organs may be. These changes go along with gonadotropins which stimulate the ovaries. Ovaries are stimulated by the development and maintenance of primary as well as accessory sex characters of the female individuals.

#### **Sex-hormones:-**

Male sex Hormones:- Testes are a male sex hormone. It is secreted by the seminiferous tubules in the testes associated by chemicals called androgens and real masculine characters.

Effects of androgens:- They are produced in the male human fetus and play an important role in the genitalia. It may cause the enlargement of the penis, testes and also the prostate and the seminal vesicles and other accessory organs. They also affect the growth of the larynx muscle development, size and distribution of body hairs. They stimulate the biosynthesis of proteins of muscle tissue and also the formation of red blood cells. They stimulate the apocrine sweat gland whose secretion attracts bacteria. And so produces body odors, associated after puberty.

#### **Regulation of androgen production:-**

Production of androgen is regulated by a gonadotropic hormone (LH) secreted by the anterior pituitary. LH acts on the interstitial cells of the testes to release androgens. It acts on the male reproductive organs, androgen inhibits in turn the release of LH. During negative feedback when it reaches a certain level, it has a profound effect on male reproductive organs. It inhibits. In turn, the release of LH. Sperm formation stops when it is discarded. Pituitary development of sperms ceases to proliferate the follicle stimulating hormone.

#### **Female sex hormones:-**

Oestrogens and progesterone are mainly two female sex-organs. They produce the ovarian follicles under the influence of follicle-stimulating hormone (FSH) of pituitary gland. Oestrogens establish steroid stimulation of the development of the breasts to external genitalia, pubic and auxiliary hairs and distribution of body fat. Both oestrogen and progesterone are regarded to endometrium for the implantation of embryo. These hormones are produced in the ovary and regulated by gonadotropic hormone.

Menstrual cycle:- The rhythmic changes occur during the 28 days, during this time reproductive life of woman from puberty to the menstrual cycle (L.menses monthly). In the phase of the menstrual cycle, bleeding occurs, this is called the menstruation phase. The duration is 3-5 days. Ovulation occurs between the midcycle period, i.e. somewhere between 13<sup>th</sup> and 15<sup>th</sup> day. Thus the average intervals of repeated 28 days earlier or the cyclic discharge of blood, mucus and certain other substances from the female. The menstrual blood contains stripped of endometrial, mucus, leucocytes and unfertilized ovum. The uterine lining induces a gradual hypertrophy. It prepares a suitable bed for implantation of the fertilized ovum.

If pregnancy occurs, the proliferated mucosa is converted into placenta. During the block of pregnancy, hypertrophic mucosa breaks down and is discharged as maturation. It is described as the funeral of the unfertilized ovum. The disappointed uterus weeps and the weeping is swept out as the menstrual flow.

The endometrial changes occur during the menstrual cycle into the four stages (i) the resting phase (ii) proliferation phase, (iii) the premenstrual phase (iv) menstrual phase. The first and second phases are called follicular phases. They

are due to gravitational action of estrogens, secreted by the maturing follicles. On the 14<sup>th</sup> day ovulation takes place and corpus luteum formation begins in the follicular spaces of ovaries.

Ovulation:- burst of egg follicle least liberating the egg and ovulation it starts about 14 days before the beginning of the menstrual cycle. Ovulation involves the development of primordial or primary follicles. The follicular stimulating hormone (FSH) from the anterior pituitary initiates and with LH regulates ovulation. An egg produced from a primary follicle first becomes partly detached from surrounding epithelial cells beneath tunica albuginea. It begins to enlarge and surrounding cells grow to form many layers. A zona pellucida appears at the developing oocyte and follicular fluid. These follicular cells surround the egg. Under the influence of primary pituitary gonadotrophin a follicular fluid is secreted by the surrounding follicular cells and cells immediately surrounding the egg become separated from the more remote cells (zona pellucida) and a large cavity, the antrum is formed. A fully developed follicle, granulosa, and the egg is called a ripe follicle.

The Graafian follicles during final stages of development move to the surface which bursts releasing ovum into the abdominal cavity. Now the ovum is swept into one oviduct with the help of cilia present at the finger-like projections of the oviduct opening. The oviduct transports the ovum to the uterus. In case the ovum is fertilized it liquefies and ovum is fertilized it liquefies and discarded through the vagina. The fallopian tubes, which enlarge but do not go into ovulation finally degenerate to form atrophic follicles which ovulates is converted into a blood-filled cavity (corpus hemorrhagicus). After release of egg blood comes from the injured vessels. Soon after this dotted blood is replaced by yellow bodies of lipids or lacteal cells (corpus luteum) and the cells and thus corpus luteum is formed under the influence of luteinizing hormone. The corpus luteum starts with the influence of anterior pituitary. If the ovum is not fertilized the corpus luteum degenerates to become corpus albicans which appears as disorganized scattered globules.

Oocyte:- The size of an human oocyte is about 0.1 mm/100 micrometer in diameter. It has ribosomes, enzymes, amino acids and other organelles for rapid synthesis of embryonic cells. The eggs are shed in the body cavity from where the ostia of oviducts pick them up. Uterus wall is thick it leads through uterus and is the site of fertilization. The uterus is connected to vagina (vaginal opening) through cervix (cervical opening). The cervical glands secrete a mucus. This mucus serves to lubricate and neutralize any acidic material present.

Vagina leads to exterior through vaginal orifice which is flanked by one pair of moist folds. The labia minora, enclosed with the fleshier hair covered outer labia majora. These structures enclose the clitoris which is a small mass of tissue just anterior to the urethral opening. Clitoris is a small mass of tissue just anterior to the urethral opening. The clitoris is homologous to the clitoris of the male. It has glans, prepuce and capable of engorgement, it serves to reproductive function. The urethra of the female opens just anterior to vaginal orifice.

Fertilization:- The spermatogenesis which are stored in epididymis in males are actively mobile as coitus near completion and the climax of the act occurs, contraction of the epididymis and vas deferens propel the spermatozoa. Through the ejaculatory ducts into the urethra. At the same time, the seminal vesicles contract and expel viscous secretion, the semen with its suspension of spermatozoa. Is ejected from the urethra with considerable force by the contraction of the external muscles and of the striated muscles in the peritoneum. The act of ejaculation occurs when the semen and the monuments which bring to constitute it is a reflex act of which sensory nerves in the penis are its afferent limb and sympathetic nerves its efferent limb. A thin secretion from the prostate gland are added to the semen in the urethra. The secretion of the seminal vesicles appears to be essential for maintaining life and motility of the spermatozoa. But the prostatic secretion and the secretions of the urethral glands are not of the importance in this respect. They probably serve as a lubricant.

Spermatozoa deposited in the upper part of the vagina during coitus propel themselves up word by local movements of the tube. Now fertilization takes place probably contractions of uterus during coitus draw the semen into the uterine cavity.