
Improved Genetic Algorithm for the Traveling Salesman Problem Using Neighbor-

Based Constructive Crossover
Yuki Takahashi¹, Alessia Romano², Ahmed El-Mansouri³, Maria Fernandez⁴, Prof. Hideo

Nakamura⁵

¹,²,³,⁴Department of Computer Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto,

Japan

⁵Professor and Head, Department of Artificial Intelligence, University of Tokyo

ABSTRACT
In this paper, a new crossover operator named Neighbor-based Constructive Crossover (NCX) is evolved for a

genetic algorithm that generates high quality solutions to the Traveling Salesman Problem (TSP). The proposed

crossover operator uses the better edges present in parents’ structure by comparing the neighboring nodes of a

node in order to generate off-springs. The efficacy of the proposed crossover operator, NCX is set against two

other crossover operators, single point crossover (SPCX) [19] and sequential constructive crossover (SCX) [1] for

several standard TSPLIB instances [2]. Empirical results and observations illustrate that the new crossover

operator is better than the SPCX and SCX in terms of quality of solutions.

KEYWORDS: Traveling Salesman Problem, NP-complete, Genetic Algorithm, Sequential Constructive

Crossover, Neighbor-based Constructive Crossover.

I. INTRODUCTION
The Traveling Salesman Problem (TSP) is an antique problem in Computer Science and Operations Research. It

can be stated as:
A network with ‘n’ cities (or nodes) with ‘node 1’ as ‘source’ and a travel expense (or distance, or travel time

etc.,) matrix C= [cij] of order n associated with ordered node pairs (i, j) is given. Thus, the problem is to find a

least cost Hamiltonian cycle.

On the basis of the structure of the cost (or expense) matrix, the TSPs are classified into two groups – symmetric

and asymmetric. The TSP is symmetric if cij = cji, ∀ i, j and asymmetric otherwise. For an n-city asymmetric TSP,

there are (n-1)! possible solutions, one or more of which gives the minimum cost. For an n-city symmetric TSP,

there are
(𝑛−1)!

2
 possible solutions along with their reverse cyclic permutations having the same total cost. In

either case the total number of solutions becomes extremely humongous for even moderately high value of n,

thereby, making the exhaustive search impracticable.

TSP remains an active research discipline and has captivated the attention of researchers because it is a proven

NP-Complete problem [3]. Also, a large number of real-world problems can be modeled by TSP. Some of them

are:- Drilling of printed circuit boards, VLSI circuits [4], Overhauling gas turbine engines [17], X-ray

crystallography [5], Computer wiring [17], Vehicle routing [17], Mask plotting in PCB production [17],

Warehouse automation system [17].
The methods that provide the exact optimal solution to the problem are called exact methods. An implicit way

(i.e. a brute force approach) of solving the TSP exactly is simply to list all the feasible solutions, evaluate their

objective function values and pick out the best. Nevertheless, it is evident that this “exhaustive search” is grossly

inefficient and infeasible because of boundless number of possible solutions to the TSP even for problem of an

average size. All practical applications require solving larger problems, hence emphasis has shifted from the aim

of finding exactly optimal solutions for TSP to the aim of getting, heuristically, ‘better solutions’ in a reasonable

time and ‘establishing the degree of goodness’. Several intelligent algorithms are available to solve the TSP, some

of them are:- artificial neural network [20], genetic algorithms [21], simulated annealing algorithm [22], ant

colony optimization algorithm[23], particle swarm optimization [24], consultant-guided search algorithm [25] and

many more. Nevertheless, Genetic algorithm (GA) is one of the best heuristic search algorithms that have been

used widely to solve the TSP instances.

The new crossover operator, Neighbor-based Constructive Crossover (NCX) discussed in the paper tends to

provide a better quality of solutions in solving the TSP, which is manifested by low excess percentages observed

for various standard TSPLIB instances.

Psychiatria || ISSN 1732-9841 || VOL_17 ISSUE_05_2025

18

The organization of paper is as follows: Section 2 develops a background study about genetic algorithm. Section

3 provides the specific details regarding some related works. Section 4 explains the proposed crossover operator

(NCX). Section 5 describes computational experiments and results for three crossover operators. Section 6

presents comments and concluding remarks, which is then followed by the acknowledgement section and

reference section.

II. GENETIC ALGORITHMS- BACKGROUND STUDY
In computer science and operations research, genetic algorithms are a metaheuristic which are based substantially

on the notion of survival of the fittest among the species produced by transmutations in chromosome gene-

structure and are inspired by the practice of natural selection which is an inherent division of evolutionary biology

[6]. To solve any problem using GA, a string should be able to constitute a solution and an objective (or fitness)

function measuring the goodness of a solution must be defined.
Genetic algorithms are often used to produce high-quality solutions to various search and optimization problems

using bio-inspired operators such as reproduction (or selection), crossover and mutation.

Genetic Encoding
The process of Genetic Encoding is important for generating feasible chromosomes. In this process, the solution

of a TSP is often represented as chromosome length (i.e. the number of nodes in the problem). There are mainly

two representation methods for representing tour of the TSP – adjacency representation and path representation.

In this research, the path representation for a tour is considered, which simply lists the label of nodes. For example,

let {1, 2, 3, 4, 5} be the labels of nodes in a 5 node instance, then a tour {1→ 5→2→ 4→ 3 →1} may be

represented as (1, 5, 2, 4, 3).

Fitness Function
The GAs are used for both minimization and maximization problems. Since, TSP is a minimization problem; a

fitness function, f(x) is considered which calculates total distance travelled as cost of the tour represented by a

chromosome and the tour with minimum cost is chosen.

Selection Operation using Elitism
In the process of selection (alias, reproduction) operation using Elitism, the best fit chromosomes are carried

forward to the next generation. Due to such assignment of the highly fit chromosomes to the succeeding

generation, elitism imitates the Darwinian concept of survival-of-the-fittest in the natural world.

Crossover Operator
In genetic algorithms, crossover is a genetic operator used to vary the programming of a chromosome or

chromosomes from one generation to the next. It is analogous to reproduction and biological crossover, upon

which genetic algorithms are based. Crossover is a process of taking more than one parent solution and producing

a child solution from them [18].

Mutation Operator
The primary purpose of Mutation operation is to prevent the algorithm from getting caught in local minima. The

mutation operator performs modification of information in the chromosome by selecting an index randomly and

altering it. As it is well known that, after successive generations the less fit members are discarded and some

aspect of genetic material might get lost permanently. Therefore, mutation maintains the mating pool diversity by

preventing the complete loss of important features. For this investigation, the reciprocal exchange mutation that

selects two nodes randomly and swaps them, is considered.

Genetic Algorithm Controlling Parameters
The parameters that govern the whole GA search process are referred as GA controlling parameters. Some of

them are:
(a) Population size: - It controls how many chromosomes and thereafter, how much genetic material is available

for use during the search process. The search has no chance to adequately cover the space if the genetic material

is too little. Nonetheless, if it is too much, a lot of time is squandered in evaluating chromosomes. Henceforth, the

population size value must be chosen aptly.
(b) Reproduction probability: - It defines the probability of the population generated by the reproduction operation.
(c) Crossover probability: - It defines the probability of the population generated by the crossover operation taking

place between any two chromosomes.
(d) Mutation probability: - It defines the probability of population generated by mutation operation.
(e) Termination criteria: - It defines when to terminate or stop the genetic search process.

Psychiatria || ISSN 1732-9841 || VOL_17 ISSUE_05_2025

19

Structure of a Genetic Algorithm
A Genetic Algorithm can be recapitulated as follows:
GA() {

Initialize population in random fashion;
Evaluate the population by calculating the fitness of the individuals in the population;
Set Generation = 0;
Loop until the termination condition is not satisfied{

Generation = Generation + 1;
Select good chromosomes (having high fitness value i.e. using elitism) by reproduction

procedure with probability of reproduction (Pr);
Perform crossover operation with probability of crossover (Pc);
Perform mutation with probability of mutation (Pm);
Evaluate the population;

}
}

III. LITERATURE REVIEW
In GA, the most important role is played by the crossover operator, and therefore, many crossover operators have

been proposed for disentangling the TSP. An operator named PMX (partially mapped crossover), defined by

Goldberg and Lingle [7] uses two crossover points. The section between these points defines an interchange

mapping. The PMX operator was the first attempt to apply GAs to the TSP, in which near-optimal solutions to a

well-known 33-node problem was found. The OX (ordered crossover) operator developed by Davis [8] builds

offspring by choosing a subsequence of a tour from one parent and preserving the relative order of nodes from the

other parent. Another crossover operator, named CX (cycle crossover) operator was proposed by Oliver et al. [9],

where offspring are built in such a way that each node (and its position) comes from one of the parents. Whitley

et al. [10] proposed edge recombination crossover (ERX) operator that uses an ‘edge map’ to construct an

offspring that inherits as much information as possible from the parent structures. This edge map stores all the

connections from the two parents that lead into and out of a node. A crossover operator based on the conventional

N-point crossover operator, named as generalized N-point crossover (GNX), was proposed by Radcliffe and Surry

[11]. Poona and Carter [12] developed a tie break crossover (TBX), which was then modified by Choi et al. [13]

by combining PMX and TBX operators. Moon et al. [14] proposed a new crossover operator named Moon

Crossover (MX), which mimics the changes of the moon such as waxing moon → half-moon → gibbous → full

moon. As per what is reported, the performance of MX operator and OX operator is nearly same, but OX never

reached an optimal solution for all trials. The Sequential Constructive Crossover Operator (SCX) developed by

Zakir H. Ahmed [1] sequentially selects the legitimate nodes and generates the offspring.

We here consider the algorithms of two crossover operators - single point crossover operator (SPCX) [19] and

Sequential Constructive Crossover (SCX) [1] for producing the offspring chromosome and comparing their merits

and demerits with our proposed approach.

Single Point Crossover (SPCX)
The single point crossover (SPCX) [19] operator constructs an offspring by selecting a crossover site (an index)

in parent chromosomes and copying the nodes before the crossover site of first parent chromosome into a new

chromosome and then copying the nodes of other parent chromosome such that already visited node do not appear

in the new chromosome.

Sequential Constructive Crossover (SCX)
The sequential constructive crossover (SCX) [1] operator constructs an offspring using better edges on the basis

of their values present in the parents' structure. Furthermore, it also uses the better edges, which are present neither

in the parents' structure. SCX sequentially searches both of the parent chromosomes and considers the first

legitimate node (i.e. unvisited node) which appeared after the previous visited node and in case, if no legitimate

node is found in either of the parent chromosomes, it sequentially searches for the legitimate node (s) and then

compares their associated cost to decide the next node of the child chromosome.

Juxtaposition: SPCX vs SCX
The SPCX crossover operator is very fast in terms of convergence time, however, proves to be bad in terms of

quality of solution (i.e. minimum total cost or distance). On the other hand, SCX appears to be comparatively

slower in terms of convergence time, nevertheless, provides better quality of solutions. However, still by looking

at the quality of solutions (as mentioned in the tables-Table 2 and Table 3), it can be understood that the quality

Psychiatria || ISSN 1732-9841 || VOL_17 ISSUE_05_2025

20

of solution for various TSPLIB instances is not good enough and there is a huge scope of improvement, which,

thereby, arises the need of a new crossover operator.

IV. PROPOSED CROSSOVER OPERATOR
The search of the solution space is accomplished by generating novel chromosomes from antiquated ones. In that

the most vital search process is crossover. The Neighbor-based Constructive Crossover (NCX) operator constructs

off-springs using better edges on the basis of their values present in the parents’ structure. Unlike SCX, NCX uses

both of the neighbors of a node. Nonetheless, like SCX, it also uses better edges, which are not present in either

of the parents’ structure. Additionally, it sometimes introduces novel, but good, edges to the offspring, which are

not even present in the present population. Hence, the chances of producing a better offspring are more than SPCX

and SCX.

The algorithm for the NCX is as follows:

Step 1: - Start from 'node 1’ (i.e., current node p =1).

Step 2: - Search both of the parent chromosomes and consider their neighboring ‘legitimate nodes' (the nodes

that are not yet visited) of 'node p’ in each parent. If no 'legitimate node' after 'node p’ is present in any of the

parent, search sequentially the nodes {2, 3, …, n} and consider the first 'legitimate' node, and go to Step 3.

Step 3: Suppose the 'node α', ‘node β' and ‘node γ‘, ‘node δ’ are found in 1st and 2nd parent respectively, then

for selecting the next node go to Step 4.

Step 4: Compare the costs of adding all nodes after ‘node p’ and then select the node with the minimum cost and

concatenate it to the partially constructed offspring chromosome. If the offspring is a complete chromosome, then

stop, otherwise, rename the present node as 'node p' and go to Step 2.

Let us illustrate the NCX through the example given as cost matrix in Table 1 [1]. Let a pair of selected

chromosomes be P1: (1, 5, 7, 3, 6, 4, 2) and P2: (1, 6, 2, 4, 3, 5, 7) with values 312 and 331 respectively.

 Table 1. The cost matrix [17]

 Node 1 2 3 4 5 6 7

 1 999 75 99 9 35 63 8

 2 51 999 86 46 88 29 20

 3 100 5 999 16 28 35 28

 4 20 45 11 999 59 53 49

 5 86 63 33 65 999 76 72

 6 36 53 89 31 21 999 52

 7 58 31 43 67 52 60 999

Select 'node 1' as the 1st node. The ‘legitimate’ nodes after 'node 1' in P1 and P2 are 'node 5', ‘node 2’ and 'node

6', ‘node 7’ respectively with c15=35, c12=75, c16=63 and c17=8. Since c17 has lowest value, 'node 7' is accepted. Now,

the PCC (partially constructed chromosome) becomes (1, 7). The ‘legitimate’ nodes after 'node 7' in both P1 and

P2 are 'node 3', ‘node 5’ and c73=43, c75=52, so now 'node 3' is accepted, and the PCC becomes (1, 7, 3). The

‘legitimate’ nodes after 'node 3' in P1 and P2 are 'node 6' and ‘node 4’, ‘node 5’ and c34=16, c35=28, c36=35, so now

'node 4' is accepted and the PCC becomes (1, 7, 3, 4). Now, the ‘legitimate’ node(s) after 'node 4' in P1 are ‘node

2’ and ‘node 6’ with c42=45, c46=53 and ‘node 2’ in P2, so ‘node 2’ is accepted and the PCC becomes (1, 7, 3, 4,

2). The ‘legitimate’ node after 'node 2' in P1 is none and P2 is ‘node 6’ and c26=29, so 'node 6' is accepted and the

PCC becomes (1, 7, 3, 4, 2, 6). The ‘legitimate’ node after 'node 6' in P1 and P2 is none, so now ‘legitimate’ node

is searched sequentially. Since, only one node ‘node 5’ is left, it is accepted and added to the solution. Thus the

complete offspring chromosome will be (1, 7, 3, 4, 2, 6, 5) with value 248 (including the cost c 51) which is less

than value of both the parent chromosomes (312 & 331) and 266 (1, 5, 7, 2, 4, 3, 6), the result produced by SCX

Psychiatria || ISSN 1732-9841 || VOL_17 ISSUE_05_2025

21

and 304 (1, 5, 7, 3, 6, 2, 4), the result produced by SPCX [19]. The crossover is shown in Figure 1. The parents

are showing as (a) and (b), while (c) is a possible offspring.

Figure 1: Example of Neighbor-based Constructive Crossover Operator

V. RESULTS AND DISCUSSION

In order to juxtapose the efficiency of the different crossover operators, genetic algorithms using NCX, SCX and

SPCX have been coded in JavaScript and executed on an Intel core i5 personal computer with clock-speed 2.5

GHz, 8GB RAM, 4MB L3 cache via the command terminal of Mac OS Sierra for some TSPLIB instances. Initial

population is generated randomly.
The following common parameters are selected for the algorithms: (i) population size is 50, (ii) probability of

reproduction (i.e. selection using elitism) is 10%, (iii) crossover probability is 80%, (iv) probability of mutation

is 10%, (v) maximum of 1,000 generations as the terminating condition. The experiments were performed 10

times for each instance. The solution quality is measured by the percentage of excess above the optimal solution

value reported in TSPLIB website, as given by the formula.

Excess (%) =
Solution Value − Optimal Solution Value

Optimal Solution Value
 x 100

The excess percentage of best solution values and average solution values over their corresponding optimal

solution values of 10 runs and the average time of convergence (in second(s)) of the algorithms is reported in the

table 2 and 3.
Table 2 gives the result for fifteen asymmetric TSPLIB instances of size from 17 to 171, whereas, table 3 gives

the result for fifteen symmetric TSPLIB instances of size from 17 to 561.
The quality of solutions of the algorithms is inconsiderate to the number of runs. In the table, the best value,

average value and average time is calculated by applying each crossover operator to the same TSPLIB instance.

Furthermore, the excess percentage is calculated as per the above formula in order to compare the solution

obtained with the optimal solution. Both the tables portray the insights in which the best values and average values

Psychiatria || ISSN 1732-9841 || VOL_17 ISSUE_05_2025

22

for NCX are better than both SCX and SPCX and the corresponding excess percentages are less. Additionally,

SPCX performs worst among the three crossover operators for almost all values; however, SPCX outperforms

NCX and SCX in terms of average time or time of convergence (i.e. low time complexity). Though, SCX surpasses

NCX in respects of time of convergence, it is noted that by observation, NCX outshines both SCX and SPCX in

terms of quality of solutions for all the instances.

Table 2. Summary of the results by the crossover operators for Asymmetric TSPLIB instances

 N C X S C X S P C X

tsplib file n
Optimum

Value
Best

Val(Excess%)
Avg.

Val(Excess%)

Avg.

Time(in

sec)
Best

Val(Excess%)
Avg.

Val(Excess%)

Avg.

Time(in

sec)
Best

Val(Excess%)
Avg.

Val(Excess%)

Avg.

Time(in

sec)

br17 17 39 39(0.00) 39(0.00) 0.4073 39(0.00) 39.6(1.53) 0.3707 39(0.00) 42.5(8.97) 0.2279

ftv33 34 1286 1350(4.97) 1487.1(15.63) 0.7947 1445(12.36) 1510(17.41) 0.6542 2233(73.63) 2561(99.14) 0.2671

ftv35 36 1473 1659(12.62) 1737.4(17.94) 0.8529 1726(17.17) 1765.2(19.83) 0.7323 2315(57.16) 2823(91.64) 0.2677

ftv38 39 1530 1655(8.16) 1706.9(11.56) 0.9704 1705(11.43) 1732.1(13.20) 0.8567 2552(66.79) 2921.7(90.96) 0.3053

p43 43 5620 5624(0.07) 5632.3(0.21) 1.3895 5636(0.28) 5644.5(0.43) 1.1725 5862(4.30) 7006.4(24.66) 0.3153

ftv44 45 1613 1775(10.04) 1854.9(14.99) 1.1269 1832(13.57) 1911.6(18.51) 0.9898 3288(103.84) 3673.7(127.75) 0.3318

ftv47 48 1776 2022(13.85) 2133.9(20.15) 1.2875 2108(18.69) 2209.3(24.39) 1.0842 3488(96.39) 4057.2(102.44) 0.3383

ry48p 48 14422 15716(8.97) 16054.3(11.31) 1.2457 16223(12.48) 16843.6(16.79) 1.1501 24914(72.74) 29708.3(105.99) 0.3406

ft53 53 6905 8480(22.80) 8708.4(26.11) 1.4578 8612(24.72) 9304.3(34.74) 1.2206 13059(89.12) 15985.5(131.50) 0.376

ftv55 56 1608 1775(10.38) 1844.7(14.72) 1.5312 1802(12.06) 1971.9(22.63) 1.3208 3652(127.11) 4354.9(170.82) 0.3925

ftv64 65 1839 2165(17.72) 2345(27.51) 1.9566 2370(28.87) 2459.4(33.73) 1.6343 4201(128.43) 5305.2(188.48) 0.4661

ft70 70 38673 41342(6.90) 42078.2(8.80) 2.2151 42243(9.23) 43521.9(12.53) 1.8875 53980(39.58) 56904(47.14) 0.5021

ftv70 71 1950 2234(14.56) 2378.5(21.97) 2.17 2452(25.74) 2566.2(31.6) 1.89 4868(149.64) 5754.9(195.12) 0.5101

kro124p 100 26230 43149(64.50) 44161.7(68.36) 3.6342 48074(83.27) 49976.2(90.53) 3.0493 107071(308.20) 119796.8(356.71) 0.7727

ftv170 171 2755 3530(28.13) 3884.1(40.98) 8.3449 4581(66.27) 4811.5(74.64) 6.8825 16530(500) 17372.1(530.56) 1.7855

Table 3. Summary of the results by the crossover operators for Symmetric TSPLIB instances

 N C X S C X S P C X

tsplib

file n
Optimum

Value

Best

Val (Excess

%)

Avg.

Val (Excess

%)

Avg.

Time(in

sec)
Best Val

(Excess %)

Avg.

Val (Excess

%)

Avg.

Time(in

sec)

Best

Val (Excess

%)

Avg.

Val (Excess

%)

Avg.

Time(in

sec)

gr17 17 2085 2085(0.00) 2091.9(0.33) 0.3613 2085(0.00) 2100.7(0.75) 0.3086 2155(3.35) 2278.6(9.28) 0.199

gr24 24 1272 1328(4.40) 1394.2(9.60) 0.561 1413(11.08) 1444.9(13.59) 0.4913 1600(25.78) 1807.9(42.13) 0.2146

hk48 48 11461 12250(6.88) 12542.6(9.43) 1.3084 12620(10.11) 13425.4(17.13) 1.1398 21666(89.04) 25486.5(122.37) 0.3447

eil51 51 426 460(7.98) 473(11.03) 1.3995 476(11.73) 501.9(17.81) 1.2765 797(87.08) 932.5(118.89) 0.3713

berlin52 52 7542 8009(6.19) 8454.4(12.09) 1.4566 8404(11.42) 9081.4(20.41) 1.2388 12363(63.92) 16305(116.18) 0.3783

eil76 76 538 575(6.87) 586.9(9.08) 2.4262 636(18.21) 681.5(26.67) 1.9737 1340(149.07) 1511.3(180.91) 0.546

pr76 76 108159 123390(14.08) 130222.9(20.39) 2.3859 137127(26.78) 144131.8(33.25) 2.0158 262244(142.46) 339919.9(214.27) 0.5424

kroA100 100 21282 24805(16.55) 25338.3(19.05) 3.717 30514(43.37) 31616.3(48.55) 3.0514 82627(288.24) 98913.8(364.77) 0.7754

Psychiatria || ISSN 1732-9841 || VOL_17 ISSUE_05_2025

23

kroC100 100 20749 22201(6.99) 23564.7(13.57) 3.6122 29020(39.86) 31448.1(51.56) 3.0306 79006(280.77) 93023.1(348.32) 0.77

eil101 101 629 705(12.08) 735.2(16.88) 3.7871 837(21.30) 852.8(35.58) 3.0854 1860(195.70) 2101.6(234.11) 0.7911

lin105 105 14379 15789(9.80) 16676.5(15.97) 3.9104 19219(33.66) 20779.6(44.51) 3.1575 64052(345.45) 68236.8(374.55) 0.8257

gil262 262 2378 3070(29.10) 3262.7(37.20) 17.298 5160(116.98) 5341.3(124.61) 13.3541 15592(555.67) 17500.7(635.94) 3.4191

a280 280 2579 2907(12.71) 2993.8(16.08) 24.4988 3403(31.95) 3608.3(39.91) 17.9052 20226(684.25) 21346(727.68) 4.0563

lin318 318 42029 52348(24.55) 55273.1(31.51) 25.1861 69377(65.06) 73443.4(74.74) 19.935 351199(735.61) 394607.7(838.89) 5.1213

pa561 561 2763 3480(25.95) 3544.3(28.27) 83.5643 4580(65.76) 4685.8(69.59) 59.0842 24610(790.69) 26212.4(848.69) 14.983

The following figures 2 and 3 depict the graph between the number of generations (x-axis) and tour cost (y-axis)

for an asymmetric and symmetric TSPLIB instances respectively. It is clearly observed from the figure 2 that

Neighbor-based CX has tour cost (3636) much lower than that of Sequential CX (5603) and basic CX (17569)

and very near to the optimum value (2755). Similarly, it can be identified from the figure 3 that the proposed

algorithm has tour cost (3191) much lower than that of Sequential CX (5604) and basic CX (18913) and very near

to the optimum value (2378).

Figure 2. Performance of different crossover operators on Asymmetric TSP instance ftv70(71 nodes) [2]

Psychiatria || ISSN 1732-9841 || VOL_17 ISSUE_05_2025

24

Figure 3. Performance of different crossover operators on Symmetric TSP instance gil262(262 nodes)

VI. CONCLUSION
A new crossover operator named Neighbor-based Constructive Crossover (NCX) for a genetic algorithm for

solving the well-known Traveling Salesman Problem (TSP) is proposed. A comparative study among NCX, SCX,

and SPCX for some benchmark TSPLIB instances is presented. In terms of quality of solutions, for small, medium

and large sized instances, SCX is found to be better than SPCX, which is evident from tables 2 and 3. Also, the

experimental results illustrate the proposed crossover operator (NCX) to be better than both SPCX and SCX in

terms of quality of solutions which is evident from the graphs shown in Figures 2, 3 and Tables 2, 3. Despite of

better quality of solution, it is also observed that the proposed approach may not always converge faster in terms

of time as juxtaposed with SCX and SPCX.
The research work only deems the primitive form of SCX and SPCX. The primary focus of this research includes

analysis of the quality of solutions by several crossover operators and the work does not aim to improve the quality

of solutions by any operator by using any local search technique. The crossover probability is set highest in order

to portray the exact working of crossover operators. The mutation operator is applied to prevent the solution from

getting stuck in local minima quickly. The population size is not set high and the parallel version of algorithms to

obtain the exact solution as was done by Whitley et al. [10] is not considered in this investigation.
In future, some algorithm can be designed to enhance the quality of solutions produced by NCX and overcome

the drawbacks of NCX (i.e. by reducing the time of convergence). In order to enhance the quality of solutions by

NCX, we also designed and implemented an enhanced version of NCX which we named Window-based

Constructive Crossover, in which we considered the neighbors in a particular window size. For example- if

window-size is two, then two on either sides of a node in a chromosome i.e. in total four neighbor nodes will be

selected from a single parent chromosome. However, after taking a window size of two, the solution quality was

good for small-sized TSPLIB instances (having a size less than 25) but the time of convergence increased

significantly and the algorithm was found out to be impracticable for even moderate-sized instances.

VII. ACKNOWLEDGEMENTS
This research was supported by Department of Computer Engineering, Shri G.S. Institute of Technology &

Science, Indore, India.

Psychiatria || ISSN 1732-9841 || VOL_17 ISSUE_05_2025

25

VIII. REFERENCES
1. Z.H. Ahmed. “Genetic Algorithm for the Traveling Salesman Problem using Sequential Constructive Crossover

Operator”, Al-Imam Muhammad Ibn Saud Islamic University, Kingdom of Saudi Arabia, IJBB Volume(3) Issue(6)

pg. 96-105, 2010
2. TSPLIB instances data source: http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html
3. C.H. Papadimitriou and K. Steglitz. “Combinatorial Optimization: Algorithms and Complexity”. Prentice Hall of

India Private Limited, India, Courier Corporation 1998.
4. C.P. Ravikumar. "Solving Large-scale Travelling Salesperson Problems on Parallel Machines”. Microprocessors

and Microsystems Volume(16) Issue(3), pp. 149-158, 1992.
5. R.G. Bland and D.F. Shallcross. "Large Travelling Salesman Problems arising form Experiments in X-ray

Crystallography: A Preliminary Report on Computation". Operations Research Letters, Journal Operations Research

letters Volume(8) Issue(3), pp. 125-128, 1989.
6. D.E. Goldberg. "Genetic Algorithms in Search, Optimization, and Machine Learning". AddisonWesley, New York,

1989.
7. D.E. Goldberg and R. Lingle. “Alleles, Loci and the Travelling Salesman Problem”. In J.J. Grefenstette (ed.)

Proceedings of the 1st International Conference on Genetic Algorithms and Their Applications. Lawrence Erlbaum

Associates, Hilladale, NJ, 1985.
8. L. Davis. “Job-shop Scheduling with Genetic Algorithms”. Proceedings of an International

Conference on Genetic Algorithms and Their Applications, pp. 136-140, 1985.
9. I.M. Oliver, D. J. Smith and J.R.C. Holland. “A Study of Permutation Crossover Operators on the Travelling

Salesman Problem”. In J.J. Grefenstette (ed.). Genetic Algorithms and Their Applications: Proceedings of the 2nd

International Conference on Genetic Algorithms. Lawrence Erlbaum Associates, Hilladale, NJ, 1987.
10. D. Whitley, T. Starkweather and D. Shaner. “The Traveling Salesman and Sequence Scheduling: Quality Solutions

using Genetic Edge Recombination”. In L. Davis (Ed.) Handbook of Genetic Algorithms. Van Nostrand Reinhold,

New York, pp. 350-372, 1991.
11. N.J. Radcliffe and P.D. Surry. “Formae and variance of fitness”. In D. Whitley and M. Vose (Eds.) Foundations of

Genetic Algorithms 3. Morgan Kaufmann, San Mateo, CA, pp. 51-72, 1995.
12. P. Poon and J. Carter. “Genetic algorithm crossover operations for ordering applications”. Computers and Operations

Research 22, pp. 135–47, 1995.
13. I. Choi, S. Kim and H. Kim. "A genetic algorithm with a mixed region search for the asymmetric traveling salesman

problem". Computers & Operations Research 30, Volume(30) Issue(5) pp. 773 – 786, 2003.
14. C. Moon, J. Kim, G. Choi and Y. Seo. "An efficient genetic algorithm for the traveling salesman problem with

precedence constraints". European Journal of Operational Research Volume(140) Issue(3), pp. 606-617, 2002.
15. Z.H. Ahmed. "A sequential Constructive Sampling and Related approaches to Combinatorial Optimization". PhD

Thesis, Tezpur University, India, 2000.
16. Z.H. Ahmed and S.N.N. Pandit. “The travelling salesman problem with precedence constraints”.

Opsearch Volume(38) Issue(3), pp. 299-318, 2001.
17. Traveling Salesman Problem: an Overview of Applications, Formulations, and Solution Approaches- By Rajesh

Matai, Surya Singh and Murari Lal Mittal, DOI: 10.5772/12909
18. https://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
19. Study of Various Crossover Operators in Genetic Algorithms, Nitasha Soni, Dr .Tapas Kumar Lingaya’s university,

Faridabad et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Volume(5)

Issue(6), 2014, 7235-7238.
20. H. Ghaziri and I. H. Osman, “A neural network algorithm for the traveling salesman problem with backhauls.” Computers &

Industrial Engineering, Volume(44) Issue(2), pp.267-281, February 2003. http://dx.doi.org/10.106/S0360-8352(02)00179-1
21. Y. H. Liu, “Different initial solution generators in genetic algorithms for solving probabilistic traveling salesman problem,”

Applied Mathematics and Computation, Volume(216) Issue(1), pp.125-137, March 2010.
http://dx.doi.org/10.106/j.amc.2010.01.021

22. Y. Liu, S. W. Xiong and H. B. Liu, “Hybrid simulated annealing algorithm based on adaptive cooling schedule for TSP,”

Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation, pp.895-898, Shanghai, June 12-14,
2009.

23. M. Dorigo, M. Birattari and T. Stutzle, “Ant colony optimization IEEE Computational Intelligence Magazine,” Volume(1) Issue(4),

pp.28-39, November 2006
24. W. N. Chen, J. Zhang, et al,”A novel set-based particle swarm optimization method for discrete optimization problems,” IEEE T.

Evolu. Computation., Volume(14) Issue(2), pp.278-300, April 2010. http://dx.doi.org/10.1109/TEVC.2009.2030331
25. S. Iordache, “Consultant-guided search-a new metaheuristic for combinatorial optimization problems,” Proceedings of the 12th

annual conference companion on Genetic and evolutionary computation, pp.225-232, July 7-11, Portland, 2010.

Psychiatria || ISSN 1732-9841 || VOL_17 ISSUE_05_2025

26

http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html
https://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
http://dx.doi.org/10.106/S0360-8352(02)00179-1
http://dx.doi.org/10.106/j.amc.2010.01.021

