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ABSTRACT 
The marriage of logic and objects is a very wide-ranging problem, approached with various approaches, 

depending on the purpose. In this article, we are interested in the modelling of the state and the change of the 

state of an object in logic programming. After a state of the art on the subject, presenting the various aspects as 

well as different solutions proposed in the literature, the article then proposes a mechanism of versions of 

objects based on the mechanism of unification and on the use incomplete structures. Indeed, the overview of an 

incomplete structure can be used to allow the entry of new information by means of unification and thus to 

foresee the future. This mechanism makes it possible to construct the history of an object by unification and to 

undo it by backtracking. The changes of state are thus made and defeated, without effects of edge, in 

synchronization with the backtrack. 
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I. INTRODUCTION 
The idea of combining the aspects of object-based programming with those of logic programming dates back to 

the early 1980s and motivated many researchers. The goal is to take advantage of the two paradigms and reduce 

their respective disadvantages. Object-oriented programming has proven to be appropriate for the construction 

of complex software systems. On the other hand, logic programming is distinguished by its declarative charm or 

flavour, built-in inference and well-defined semantic capabilities. The marriage of these two paradigms can be 

justified in these terms and should make it possible to increase the possibilities of use, to widen the fields of 

application of the languages that result from it, and to lead to more efficient, more intelligent systems. These 

include developing complex representation and knowledge processing languages. 

Logic programming provides an opportunity to formulate and solve problems declaratively. In logic 

programming languages, problem solving will be done by describing what needs to be done instead of 

describing how it should be done as long as this is the case when using procedural programming languages. The 

declarative way of programming offers a good method for building the software, for example for knowledge of 

systems, database applications, etc., because software developers must then be much less concerned with the 

procedural aspects of the software. their programs because they use a conventional programming language. In 

addition, object-oriented programming as a special programming paradigm provides benefits for software 

engineering. In object-oriented programming languages, the relevant world to model is considered a collection 

of stand-alone objects that encapsulate data and procedures. Objects are hierarchically structured and can inherit 

methods, namely data and procedures. This improves the reusability and maintainability of the software. 

Although several attempts have been made to combine both logic and object-oriented programming, the 

characteristics of the two paradigms have often not been met, including the declarative semantics of logic 

programming. 

 

In this paper, our interest is focused on the modelling of the state and the change of the state of an object in logic 

programming, with emphasis on the preservation of the declarative semantics of programming in logic. This is a 

difficult subject in that it raises the problem of the formal semantics of updates. The article is organized as 

follows. In the first part we describe the different aspects of the problem and present the existing solutions. In 

the second part, we present a new mechanism of object versions, based on the unification mechanism and on 

incomplete structures. This mechanism implemented in the OO-Prolog language is then compared to other 

approaches. OO-Prolog is a programming language that consistently integrates programming paradigms into 

logic and object-based programming. It is fully developed in Prolog. In this language, an object is a named 

collection of Prolog predicate definitions. In this sense, an object is similar to a Prolog module. The object 

system is defined as an extension of the Prolog module system. In addition, an object can have attributes with 

values that define its history and a future that gives it a perspective of evolution in tree time. The predicate 

definitions belonging to an object are called methods. Thus, an object is conceptually a named collection of 
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methods and attributes. Each object has a unique identifier. Some of the methods defined for an object should 

not be stored in the object explicitly, but rather are shared with other objects by the inheritance mechanism. The 

object system allows objects to be defined in a file, or created dynamically during program execution. In any 

case, during the resolution, the programs are loaded into the resolution environment. Objects defined in a file are 

integrated into the Prolog environment. That is, objects have a specific syntax like Prolog terms, and can be 

loaded into the Prolog environment. The defined objects can be either static or dynamic. In addition, the 

methods can be either dynamic or static. These properties are inherited by the sub-objects. Objects created 

during execution are dynamic. The inheritance mechanism is implemented using the import mechanism of the 

module system. Inheritance is a default inheritance by the overriding mechanism, which means that if a method 

is defined locally, and the same method is defined in a super object, then the clauses of the super method are not 

part of the definition of the locale, unless explicitly designating the class that defines the desired behaviour. As 

usual in Prolog, the methods can be undefined in a definite way, and alternative answers can be retrieved 

through backtracking. Using the delegation mechanism, other methods of knowledge sharing can be 

implemented by the user. In objects, there is a first proto-object prototype called "object", from which other 

objects can be constructed, directly or indirectly. 

 

II. STATE OF THE ART 
2.1 The different aspects of the problem 

2.1.1 The behaviour of a logic variable 

In traditional object languages (Java, C++ [Stroustrup 92], CLOS [Bobrow 88a, 88b, Steele 90], Smalltalk-80 

[Goldberg 83], Eiffel [Meyer 87a, 88, 90], etc.), state of an object is represented by the values assigned to its 

imperative instance variables and can be modified by assigning new values to these variables. Each variable 

represents a memory location whose contents may change by assigning a new value. However, a logic variable 

represents a unique but unknown entity and not a memory location whose contents can be changed by assigning 

a new value. It cannot therefore substitute for a mandatory variable. Once a logic variable has been instantiated, 

the only way to undo its value is to go back (backtrack). 

 

2.1.2 The intrinsic limitations of first-order logic  

Another basic difficulty of this integration is that the first-order logic programming on which a large number of 

logic programming languages such as Prolog - the best-known and most widely used - seems to be 

fundamentally incompatible with the change of state. Indeed, the change of state introduces a temporal element; 

hence the need to look for alternative semantics. Ideally, we would like formal semantics, using, if possible, 

well-defined logics. Note that logic programming is not linked to a logic system like first-order logic or a 

language like Prolog. It groups together all the languages based on a well-defined logic system. 

 

2.1.3 The search for a balance between theoretical and practical aspects 

In object-based programming, we must propose a way to model the state of objects and introduce state changes 

by finding a balance between the respect of the declarative semantics and the effectiveness of the 

implementation mechanisms so that applications are not too penalized in terms of performance at runtime. In 

practice, it is always necessary to look for the best compromise between these two criteria. This goal must be 

achieved by providing meaningful and understandable operational semantics, based on effective inference 

mechanisms [Malenfant 90b] and a logic system that facilitates implementation. 

 

2.1.4 Identification of objects 

For [Bouché 94] who uses "Booch thought" [Booch 92], "an object is defined as anything that has an identity, a 

state and a behaviour". "The identity of an object is the property of an object that distinguishes it from all 

others" [Khoshafian 86]. An object behaves like a living being, whose state evolves with time, but which one 

can always identify, in its different forms (states). In addition to the flexibility of manipulation it offers, the 

identity of the objects also serves to their "modifiability". These two notions are closely related. The absence of 

this important property in languages like CIEL [Gandriau 88] or LOGIN [Gallaire 86] has important 

consequences on the semantics of state change. In particular, two equal objects (in the sense of equality of 

structures) will necessarily be identical since the only possible structural comparison makes them identical. 

 

2.1.5 The influence of the order of operations on the state of objects  

The behaviour of an object is influenced by its history; the order in which operations are applied to an object is 

full of consequences. The reason for this behaviour depends on the time and existence of a state in the object. 

The classic image of time, used in object systems (imperative approach of programming), is the one used in 

Newtonian physics. Time is a "one-dimensional linear continuum". In certain theories or modes of reasoning, 

we are led to use a non-linear time model, where a moment may, for example, have several futures unrelated to 

each other. This is true for the temporal logic that uses a tree time. 
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2.1.6 Semantic problems of "assert" and "retract" update predicates  

Several Prolog systems offer "assert" and "retract" update predicates to dynamically modify programs and have 

long sought to define reasonable semantics for them [Moss 86; Lindholm 87]. These predicates have been 

known since their appearance as one of the gray areas of the Prolog language and their semantics are procedural. 

Even worse, it is not defined in a standard way. Out of twelve Prolog sites he studied in 1986, Moss 

distinguished nine different behaviours from the "assert" and "retract" predicates [Moss 86] and identified three 

major issues. First, since the "assert" and "retract" predicates result in dynamic program changes, the queries 

that contain them become sensitive to the order in which the goals are executed. Second, the influence of the 

predicates on the goals already called in the presence of the backspace; the problem of the visibility of the 

effects of the "assert" and "retract" predicates then arises for the goals already called. This leads to problems of 

consistency and program termination. Finally, the use of the "assert" and "retract" predicates raises the problem 

of changing the quantization of variables that occurs when dynamically adding a partially instantiated rule that 

can be instantiated later. Indeed, the logic variables in a query are quantized existentially while the variables in a 

rule are quantized universally [Warren 84; Bowen 85b]. Thus, when an "assert" adds a rule containing variables 

to the base, the status of these variables changes from an existential quantization in the query to universal 

quantization in the database. When we use the rules (facts) to represent the objects, we are then faced with this 

problem. Three solutions are proposed in the literature to treat this problem [Chen 88a]: 

- Allow only the addition of fully instantiated facts [Warren 84]. This solution is too restrictive and therefore 

does not allow the modelling of situations where the programmer has only partial knowledge of the domain 

(the unknown being represented by free variables). 

- Explicit quantification of variables [Warren 84; Machanda 88]. This solution is interesting but a bit of a 

constraint for the programmer who does not see his programming efforts diminish. 

- The management of existential variables. This solution is interesting since it allows a natural link between 

the variables in a query and those in the database. However, it is difficult because it poses the problem of 

the management of existential variables in the database. 

 

2.1.7 Improvements in the behaviour of the "assert" and "retract" update predicates 

Three major movements have shown the need to define a coherent semantics of "assert" and "retract". First, the 

portability requirements of large applications written in Prolog have emphasized the fact that consistency 

between Prolog implementations is necessary, even for predicates recognized as not having declarative logic 

semantics [Lindholm 87]. Then, to consistently handle updates and avoid edge effects, some Prolog systems 

have predicates for temporary addition of rules to the database. Finally, deductive databases, in connection with 

logic programming and Prolog as programming and query language, require well defined semantics of updates 

to improve program comprehension and reliability [Warren 84; Naish 87; Machanda 88]. 

 

2.2 Solutions for Modelling the State and State Change of an Object in Object-Based Logic Programming 

Several approaches have been proposed to model the state of an object in object-based programming. In this 

section, we will describe the main existing proposals. The question of modelling the change of state of an object 

is often closely linked to the choice of an approach for the representation of its state. Thus, we will present the 

various modes of representation of the state of an object to discuss more precisely how is to model the change of 

state in each case. 

 

2.2.1 Modelling based on imperative variables. 

This approach consists of directly transplanting, in a logic programming language, regardless of the declarative 

semantics, imperative variables as they exist in traditional object programming. The state of an object is then 

represented by a set of instance variables to which values are assigned using an assignment statement. State 

changes are done in a destructive way, with no possibility of backtracking. This approach is essentially 

pragmatic and incompatible with the declarative style of logic programming. It is especially appreciated for its 

efficiency of calculation that by a need of proof of computation. Several languages are constructed according to 

this schema: ESP [Chikayama 83, 84], LOOKS [Misoguchi 84], SPOOL [Fukunaga 86], Orient84 / K [Ishikawa 

86a, 86b, 87], PROBE [Gandilhon 87], Prolog Objects, etc. To clarify our point, here are two languages 

representative of this approach. 

 

Objects Prolog is an extension of Prolog SICStus [SICStus Prolog, 2017]. Objects Prolog is based on the 

concept of prototype. In object-oriented programming, a prototype is an object that represents a typical 

behaviour of a certain concept. A prototype can be used as is or as a template to build other objects that share 

some of the characteristics of the prototype object. These objects can themselves become specialized prototypes 

and used to build other objects and so on. The basic mechanism for sharing is inheritance delegation. Using the 

delegation mechanism of an object can convey a message to another object to invoke a method defined by the 
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recipient, but interpreted in the context of the sender. In Prolog Objects, an object is a named collection of 

predicate definitions. In this sense, an object is similar to a Prolog module. The object system can be seen as an 

extension of the SICStus Prolog module system. In addition, an object may have attributes that are editable. 

Predicates belonging to an object are called methods. Thus, an object is conceptually a named collection of 

methods and attributes. Some of the methods defined for an object should not be stored in the object explicitly, 

but rather are shared with other objects by the inheritance mechanism. The inheritance mechanism is 

implemented using the import mechanism of the module system. As usual in Prolog, the methods can be 

undefined in a definite way, and alternative answers can be obtained through backtracking. 

 

Prolog++ is an APL Associates product for object-oriented programming extensions of APL Prolog [APL 

2017]. Prolog++ is a complete object-oriented system integrated into a Prolog framework. Objects and instances 

provide a convenient way to structure related knowledge and data elements. A hierarchy of objects (or classes) 

makes it possible to define the information at the highest relevant level and to inherit it via the taxonomy. This 

distributes data and functionality along a line from general to specific. By segmenting information with this 

approach, complex data relationships can be efficiently managed. The ability to define object taxonomies with 

Prolog ++ and manipulate them with Prolog rules provides a powerful combination for serious programmers. 

Most Prolog ++ programs can be easily converted into Prolog Object programs. 

 

2.2.2 Modelling based on logic terms 

Another commonly used approach is to make an object a logic term also called "object-term". In logic 

programming, a closed functional term represents an element of the domain. It can represent structured data, 

analogous to a structure of a structured programming language such as C, Java, PHP, etc. The functional symbol 

is then interpreted as the name of the type or class. The arguments of the term represent the state of the object. 

In the system of Zaniolo [Zaniolo 84] and Stabler [Stabler 86], for example, the term point (Abs, Ord) represents 

a set of objects and has as possible instance the term point (2,3). CIEL [Gandriau 88] is another language that is 

based on this approach. In this language the class Point can be defined as follows: 

 (class Point {abs: Integer, ord: Integer } (methods 

 print( Point {abs: x, ord: y} ) -> write(x),write(' - '),write(y);...)) 

 

An instance of this class can be defined by instantiating the arguments of this object-term: Point{abs: 2, ord: 3}. 

In general, the functor of a term-object (Point, in the example above) represents the name of a class. The 

definition of an instance is done by instantiating the arguments of the object-term with constant values. 

Based on this reasoning, several languages associate logic terms and objects and make an object a logic term, 

also called "object-term". 

 

In LOGIN [Aït-Kaci, 86], LIFE [Aït-Kaci, 88, 89a, 89b, 91, 93] and U-Log [Gloess, 84, 85, 89a, 89b, 90, 91, 

95] which use this mode of representation, an object is represented by a "Psi-term". For example, the Psi-term 

below represents the structure of the instances of the person class. 

 

person(name => N:string, age => Age:integer, father => person(name => N)) 

 

As in the first languages, a particular instance is defined by instantiating the arguments of the Psi-term by 

constancy values: person(name => dupond, age => 12, father => person(name => dupond)) 

In this approach, state changes are made by creating a new term with new parameters. As the example below 

shows, CIEL uses this approach and requires the object on which a method operates to explicitly appear as an 

input and output argument to the method : push(stack(S),X,stack([X|S])). 

 

In fact, CIEL is a logic programming language in which the notion of assignment does not exist.  

 

The main consequence is that the value of a class instance can not change. To simulate the state change of an 

instance when applying a method, another object is created by unification. Here, the management of the 

consumption and the production of the terms-objects becomes the responsibility of the programmer who must 

take great care to pass from one method call to the other the good state of the object. This approach preserves 

the declarative semantics of programs and does not go beyond the framework of first-order logic. The logic 

object-term approach is interesting from a logic point of view insofar as it preserves the declarative semantics of 

logic programming. However, from the point of view of object-oriented programming, it poses several problems 

and is therefore often criticized: 

- the difference between class and instance is not as clear as in conventional object languages. 
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- the identifier of an object is seen as a pointer to the structure of the object. Languages using the logic-based 

approach are often devoid of this important feature of objects and do not distinguish two equal but not 

identical objects. 

- Failure to respect the principle of encapsulation. 

- Syntactic verbosity: the objects being identified by their data, the user directly manipulates the whole 

structure of the object, with all its parameters. The number of arguments of an object-term being sometimes 

high; this leads to languages whose writing is characterized by syntactic verbosity. 

 

This approach is therefore interesting, but we must look for a way to solve these different points. 

 

2.2.3 Modelling based on atomic formulas 

Conery's logic objects [Conery 87a, 87b, 88a, 88b] are another technique for using first-order logic to model 

objects with an editable internal state. The goal is always to introduce the advantages of object programming in 

logic programming so as to have a minimum impact on the existing logic programming structure (that of Prolog 

in particular). It is a system in which the operational semantics are defined by proof of resolution in the logic of 

the first order. In Conery's schema, a logic object is represented by an atomic or literal formula. In a program, 

the set of predicate symbols is divided into two subsets: one for object names and another for procedure names. 

Literals with object names as predicate symbols are called "object literals", and literals formed from procedure 

names are called "procedure literals". The program below contains a definition of the class "Pile" which allows 

illustrating these two notions. In this one, stack (ID, L) is an object literal and empty stack (ID), stack (X, ID), 

depilate (X, ID) and vertex (X, ID) are procedural literals. 

Description of valid batteries: 

A valid stack is here an empty stack or a stack whose all elements are integers. 

 stack(ID, [] ). 

 stack (ID, [X|L]) <-  integer(X) /\ stack (ID,L). 

 

How to create a stack: 

The creation of a stack consists in introducing in the resolvent (expression introduced in order to reach or 

complete a solution) the object literal stack (ID, []). The "new_pile" method below has a special role in the 

description of the "Stack" class. Its function is to introduce into the system a new object literal. 

Methods of the class 'Stack': 

 emptystack(ID) /\ stack(ID, [] )<- stack (ID, [] ). % emptiness test. 

 headup(X,ID) /\ stack(ID,S)<- integer(X) /\ stack(ID,[X|S]). 

 unstack(X,ID) /\ stack (ID, [X|S])<- stack (ID,S). 

 top(X,ID) /\ stack (ID,[X|S ])<- stack (ID,[X|S]). 

 

A query is really a pair of queries that are linked through shared variables. Part of the query concerns only literal 

procedures; the other consists of object literals. Complete proof requires both evidence of the existence of 

objects and proof that these objects satisfy a given set of constraints. Both sub-proofs are linked and executed 

simultaneously. Object literals are used to define objects and their states. A positive object literal (at the head of 

an object clause) defines the structure (name and arguments) of a class. Negative object literals (in the body of 

an object clause) represent class instances, where arguments are the current values of state variables. On the 

other hand, the procedure literals at the head of an object clause define the name and list of parameters of the 

methods. In the body of the clause, the procedure literals define method calls. The table below provides the 

procedural interpretation of a number of clauses, with various combinations of object literals and procedures. 

 
Table 1: Procedural and declarative interpretation of the object clauses. 

Clause Declarative reading Procedural reading 

p. p is true. the procedure p is solvent. 

s. s is an object. s is a valid object. 

<- p.  call of the procedure p; proof of p. 

<- s.  create an object with state s. 

p <- q. p is true if q is true. to solve p, solve q. 

s <- t. s is an object if t is an object. given an object with state s, create an object with 

state t; transform s into t. 

   

p <- q / \ s. p is true if q is true and 

s is an object. 

to solve p, solve q and create a 

object with state s. 

s <- q / \ t. s is an object if q is true and 

t is an object. 

s can be transformed into t if q is 

solvent. 
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In Table 1, p and q are literal-procedures; s and t are literal-objects. The procedural interpretation of a negative 

object literal is "to create an object with state s". A positive object literal is a pre-condition for the execution of 

goals in the body of an object clause. In other words, in the order in which the goals in the body of a clause are 

invoked, there must be an object that satisfies the head of the object clause. A rule with an object literal at the 

head and another object literal of the same name in the body (with new parameters) can then be interpreted as a 

state transformation rule of an object. The state changes of the objects are then made by this type of rules. 

 

Semantically, Conery pays the high price because it allows the user not to put the object in parameter methods. 

He prefers to automatically process the consumption and production of object literals. This automatic processing 

obliges him to create a total order between the objects solved with the help of object rules, which goes against 

the declarative semantics which is insensitive to the order of reduction of the goals. In general, a query, 

consisting of a mixture of object literals and procedure literals, represents a query for proof of the existence of a 

set of objects and for the accuracy of a number of conditions. Since object clauses have declarative semantics, 

we can compare an object proof with the more conventional one. 

 

Logic objects give assignment semantics (assignment) in terms of modified procedure proof. This allowed 

Conery to state that the executions of the object programs correspond to the logical consequences of the theories 

[Conery 88a]. Nevertheless, there is no way to give declarative semantics as good as theoretical proof. The lack 

of such declarative writing for objects weakens the argument that logic objects are logical. 

From the point of view of object-based programming, although it introduces the notion of object identifier, it 

suffers from a number of defects: 

- The lack of structuring of programs (important aspect in programming by objects); the structure of a 

program is the same as that of a PROLOG program. 

- As in the previous approach, the distinction between classes and instances is not clear. In addition, a class 

only exists by its methods. Indeed, the definition of a class is done by declaring the rules that define the 

behavior of its instances. 

- If syntax verbosity is suppressed in the message sending protocol, it remains in the signature of a method in 

which the entire structure of the object must appear as a literal. 

- It is difficult to define inheritance with object clauses. Indeed, a call to a literal procedure results in the call 

of the associated object literal (explicitly bearing the name of a class). 

 

However, this system represents an interesting approach to representing objects with state. By modifying the 

proof of procedure, to allow the modelling of the assignment, we obtain a system that makes it possible to 

simulate the change of state rather than a purely descriptive formulation. 

 

2.2.4 Modelling based on perpetual processes 

This approach consists of modelling an object with a perpetual process defined by a recursive predicate. As in 

the previous approach, the predicate functor represents the name of the object. Some arguments of this predicate 

are intended for the representation of the state of the object. A perpetual process characterizes what intuitively 

causes changes over time. The change of state is then modelled by substituting for a goal-process that unifies 

with one of the rules of the predicate-object the goal-process network specified by the body of the rule in 

question. Several languages are based on this approach. These languages are often based on competing logic 

programming languages such as Concurrent Prolog [Chapiro 83a, 83b, 86, 87, 89], KL1 (Knowledge Language 

1). 

Shapiro and Takeuchi [Shapiro 83b, 87] model an object with Concurrent Prolog processes as in the example 

below that we have already presented and which we voluntarily resume here to illustrate this approach: 

 counter([initialize | Messages],Etat) :- counter(Messages?, 0). 

 counter([up | Messages], State) :-  

  New_State is State + 1, counter(Messages?, New_State?). 

 counter ([down | Messages], State) :-  

  New_State is Etat - 1, counter(Messages?, New_State?). 

 counter([show(State) | Messages], State) :-  

  counter(Messages?, State). 

 counter([ ], State). % stopping the process. 

 

Here, the counter object is a goal whose behaviour is defined by a predicate and the first argument of the 

predicate-object is a list of messages. The rules define the behaviour of a goal-object according to the received 

messages. All of this happens in a competing language. One of the main problems is sharing an object between 
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portions of the program that want to use it. The linearization of the operations is done by order of the messages 

rather than by that of the versions. In Shapiro and Takeuchi's approach, everything happens in a competing and 

deterministic logic programming language (Concurrent Prolog) that no longer assumes the important properties 

of logic programming as completeness. The introduction of determinism is often justified by a gain in efficiency 

of execution. Vulcan [Kahn 86a, 87], Mandala [Furukawa 84; Ohki 87, 88] and Polka [Davison 88, 89b, 91] are 

three languages in the same lineage. Since Concurrent Prolog communication management is problematic, 

Vulcan suggests using a pre-processor to automatically handle and polish the language syntax at the same time. 

Mandala is a language based on the KL1 language developed as part of the fifth generation project in Japan. 

Polka offers a syntax built over Parlog [Clark 86, 87], a programming language in parallel logic similar to 

Concurrent Prolog and which facilitates the writing of programming by objects. 

 

LO [Andreoli 89, 90a, 90b, 90c, 91, 92] is another framework for amalgamating the paradigms of logic 

programming and object-based programming and which also represents an object by a predicate-process and the 

state of an object by the arguments of a process. Thus, as in the schema of Shapiro and Takeuchy, the dynamic 

behaviour of objects is then expressed, linearly, in terms of the search tree. The theoretical foundation of Linear 

Objects is Girard's linear logic [Girard 87, 89], a logic introduced to provide a theoretical basis for the study of 

competition. A major advantage of LO is to have a well defined logic as theoretical support. It thus preserves 

the declarative writing of logic programming. As an example, consider the class of points in the plane, with both 

slots x (abscissa) and y (ordinate). One possible instance of this class is (3,5). In the program below, the trans 

(Dx, Dy) and projx methods modify the state of a point by creating a new process with new parameters that 

define the new state of the object. 

 point @ [trans(Dx,Dy) | S] @ x(X) @ y(Y)   

  `New_X is X + Dx, New_Y is Y + Dy 

  <- point @ S @ x(New_X) @ y(New_Y). 

   

 point @ [projx | S] @ x(X) @ y(Y)   

  <- point @ S @ x(X) @ y(0). 

 

In the first, the state of the object goes from (X, Y) to (X + Dx, Y + Dy). In the communication stream S, the 

first message, that is to say the one that comes immediately after trans (Dx, Dy), will be processed in the new 

state (X + Dx, Y + Dy) of the object. The messages are processed linearly according to their order of appearance 

in the communication flow of the object. The main objections to this approach are often: 

- Syntactic verbosity as in the first approach. 

- The difficulty of managing the communications and in particular to share the same object between several 

portions of the program. 

- It should also be noted that all this happens in a language that is parallel and programming in parallel logic 

such as that of Concurrent Prolog no longer provides important properties of logic programming as 

completeness1. 

 

2.2.5 Modeling based on logic rules 

This approach consists in seeing an object as a base of rules and in representing its state by the set of rules 

present in this. It allows us to retain the unification of data and procedures specific to logic programming where 

the rules and facts use the same representation. It has the advantage of addressing the elements handled directly 

by logic programming, the rules, and not of interpreting them according to the concepts of object programming. 

The object-rule approach also results from an abstraction where the concept of the theory of logic is made to 

correspond to the concept of an object. This analogy leads us to consider a class as the description of a theory or 

meta-theory and a metaclass as a meta-meta-theory (Malenfant 90b). Several languages are based on this 

approach: POL [Gallaire 86], ObjVProlog [Malenfant 89a, 89b, 89c, 89d, 90a, 90b, 91, 92], Prolog ++[Moss 90, 

94] [LPA 2017], etc. 

 

In this mode of representation, an object can be seen as a theory and the change of state as the modification of 

this theory [Malenfant 90b]. This brings us back to the problem of the semantics of a theory whose assertions 

can be modified during deduction. Indeed, if an object is to be seen as a logical theory, what meaning can be 

given to the changes of this theory? If we admit the modification of a theory during deduction, we are 

confronted with the problem of the semantics of a theory whose assertions can be modified during deduction. 

On the other hand, the dynamic addition and removal of clauses in the database raises the problem of the 

consistency of updates and the change in the quantification of logical variables. 
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Languages such as Prolog / KR [Nakashima 84], Object-Prolog [Doma 86], Scoop [Vaucher 88], Prolog ++ 

[Moss 90, 94] [LPA 2017], use the Prolog assert and retract or similar predicates (eg a record example in 

Delphia-Prolog) whose semantics are imperative. The languages that use them suffer from the same problems of 

semantic order and coherence. These predicates are often preferred for their computational efficiency. 

 

In the absence of a logical semantics, [Malenfant 90b] adopts an operational approach consisting, according to 

his own words, to preserve the maximum of the logic of the Horn rules and to define an operational semantics of 

the changes of state of the objects which limit the effects on the semantics declarative. In the "object version 

mechanism" it proposes for the implementation of the ObjVProlog-V (ObjVProlog with Versions) language 

[Malenfant 90b], the object versions subdivide an object into a sequence of rule bases. A resolution context is 

then a triplet (<object>, <version>, <class>), where <version> and <class> respectively indicate the rule base in 

the sequence that forms the object and the level in this base rules. Four rules then make it possible to determine 

in which version a goal must be solved [Malenfant 90b]. According to this approach, an object is built of a 

sequence of versions that represent the history of state changes for that object since its creation. Thus, when a 

change is executed, conceptually, a new copy of its rule base is made. A message to an object is normally fully 

resolved in the context of the latest version of the object in this rule base when the object begins to resolve it. 

Contrary to the approach we advocate, ObjVProlog-V's object versioning mechanism is a mechanism that seeks 

to separate as much as possible the backtracking, to find solutions to a message, the classic behavior associated 

with the change of state of the objects. As a result, the state change is seen as a behavior that is not related to 

backtracking. [Malenfant 90b] justifies this choice by the fact that the change of state for the objects usually 

implies a progression in time which is badly related to the backtracking. 

 

2.2.6 Modeling based on intentional variables 

Chen and Warren [Chen 88a] have addressed the problem of logical programming assignment by proposing to 

use Montague's intentional logic as a semantic basis for changing values of variables. Intentional variables are 

modelled as a sequence of values in each state, and during deduction, goals are solved in a given state as long as 

there is no change of state. The deduction procedure with intentional variables makes and breaks the state 

changes in synchronization with the backtracking. This approach has a clear semantics in intentional logic. It 

should serve as a well-defined semantic alternative to imperative variables. 

 vide(IP) :- IP :: []. 

 top(IP, X) :- IP :: [X | _]. 

 stacking(IP, X) ::= IP :: Stacke, IP := [X | Stacke]. 

 unstacking(IP) ::= IP :: [_ | Stacke], IP := Stacke. 

 

As the example above shows, there are two types of predicates: 

- static predicates, defined by static rules introduced by the ": -" operator; 

- and dynamic predicates, defined by dynamic rules introduced by the ":: =" operator. 

 

The interpretation is as follows. A static rule is identical to a Horn rule except that it may contain access to the 

value of an intentional variable, represented here by the operator "::"/2. A dynamic rule allows you to modify an 

intentional variable using the operator ":"/2. 

 

2.2.7 SWI-Prolog approach for web semantic 

The Web (semantics) is one of the most promising areas of application for SWI-Prolog. Prolog manages the 

natural RDF semantic web model, where RDF provides a stable model for representing knowledge with shared 

semantics. It turns out that Prolog is also quite capable of providing web services (HTTP), especially where it 

comes to dynamic generation of HTML pages and providing data for JavaScript in web applications by using 

serialization JSON. This is an imperative approach that does not respect the declarative semantics of logic 

programming. 

 

2.2.8 Other approaches 

LOO [Mancarella 195] is an object-oriented language in logic programming. The Loo language combines 

object-oriented programming with logic programming. Authors define model classes as sets of clauses that 

represent their methods. An object is an instance of a class and is identified by a unique name. They use a set of 

operators on theories of manipulation of state changes and for the inheritance of modelling. The authors remain 

very vague and give no details on the modelling and implementation of these mechanisms. A message sent to an 

object results in an objective that is resolved relative to a dynamic composition of clauses representing its class 

and its current state. The challenge is to avoid superimposing a complex syntactic and semantic structure over 

the simple structure of logical programming. The authors say they have tried to extend logical programming in a 

conservative way, as much as possible, in order to maintain simple and clear semantics. 
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2.2.9 Comparison of approaches 

This multitude of approaches shows the wealth of logic programming that offers several formalisms of 

representation. With the exception of models based on imperative variables, all the others manipulate elements 

of logic programming (logical term, predicate, logical rules, etc.). However, their level of granulity differs. 

In the logic-based approach, one essentially seeks to interpret the elements of logical programming in terms of 

object-oriented programming. By confining itself to interpreting terms as objects, some advantages of logical 

programming can be made to object-based programming, but relatively little is made of logical programming 

[Malenfant 90b]. 

 

Clauses and predicates completely change perspective on terms. In fact, it changes the way data structures and 

terms are handled, much like a typing system does. The clauses are at a level of granularity where one is not 

interested directly in the terms that are manipulated by rules, but in the sets of clauses seen as largely 

autonomous bases of knowledge, behaving like logical programs. 

 

However, if the programming with the clauses of Horn has a clear semantics, this representation mode poses the 

problem of updating the base of clauses during the resolution (change of quantification of the variables, 

coherence of the updates, etc.). 

 

Approaches based on logical terms, literals and perpetual processes do not experience the same semantic 

problem as rule-based approaches. The defects noted come rather from the non respect of certain characteristics 

of the programming by objects. Approaches based on logical terms, literals and processes generally suffer from 

syntactic verbosity. In these approaches, the objects are devoid of identifier and are identified by their structure. 

We also note that in these approaches, the distinction between classes and instances is not as clear as in 

conventional object languages. In some of these approaches (Logical objects of Conery, objects in Concurrent 

Prolog, LO, etc.), a class exists only by its methods. 

 

These approaches, however, offer advantages in terms of unification and have clear logical semantics. In 

particular, they provide a solution to the problem of changing the quantization of logical variables since, during 

the resolution, all the actions on the objects are performed in an existential environment. 

In Vulcan, SCOOP, 'Objects as Intensions', ObjVProlog, the atom that represents the object identifier is 

generated by the system to ensure its uniqueness. 

 

After having reviewed the main existing approaches in logic programming to model the state and the change of 

state, we note, despite the multitude of proposed solutions, the difficulty of establishing state changes of objects 

on a semantic logic and effective implementation mechanisms. The search for a logical framework for the 

semantics of state changes of logical objects and that of implementation mechanisms remains, from this point of 

view, a very open subject in that, the answer to all the considerations , theoretical and pragmatic, which 

constrain the definition of a programming language in logic and object-oriented is not easy. In the next section, 

we describe our approach to modelling state and state change in logic programming. Our approach takes into 

account both declarative semantics and the effectiveness of implementation mechanisms. 

 

III. THE LOGIC OBJECT VERSION MECHANISM OF THE OO-PROLOG LANGUAGE 

Classically, the change of state of an object implies a progression in time (linear time) which is badly related to 

the backtracking. Consequently, the change of state is seen as a behaviour that is not linked to the backtracking. 

As we said before, the image of time is here that used in Newtonian physics. Time is a one-dimensional linear 

continuum. The mechanism we propose is based on the unification mechanism, as a matching tool, and on the 

backtrack. Our goal is to have dynamic objects that can be built by unification and undone by backtracking. In 

order to avoid edge effects, we propose to manage objects in a temporary existential environment. This 

facilitates the links between variables. An immediate consequence is that during the deduction, the 

quantification of the variables involved does not change. An object can be partially instantiated. In other words, 

its state can contain variables that can be instantiated later. In an edge effects programming style, the focus is on 

a global environment. In the OO-Prolog [Ngomo 96] language, this global environment is erased by considering 

it as an additional parameter of each method which calculates, in addition to the normally expected result, a new 

environment. Objects are handled through this environment. A state of this environment represents an aspect of 

the universe at a given point in the time of deduction. In the OO-Prolog language, an object is characterized by 

its history and behaviour [Lieberman 86]: the future is represented by the set of free variables (anything can 

happen), the past is instantiated (it's too late) . During the deduction the objects are built by unification and 

defeated by backtracking. As the resolution time goes back when looking for new branches leading to new 

solutions, this is translated operationally by the restoration of the previous states when there is backtracking. 
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3.1 Internal representation of an object 

In the OO-Prolog language, objects can be statically declared in a program, but dynamically manipulated via an 

existential, temporary and scalable environment. An object environment is represented by an incomplete 

structure2 shared by all objects. This environment is a common knowledge base for objects. It has the following 

form: ENV = [next(PtrObject),..., clock([0|NextDate]),date(0),Id1:E1,Id2:E2,...,Idn:En]. 

We are talking here about a dynamic environment open to changes of state. Otherwise, the environment may be 

static or closed, with no possibility of state changes. This is then expressed as follows: 

 

ENV = [next(closed),..., clock([0]),date(0),Id1:E1,Id2:E2,...,Idn:En]. 

This type of environment is used in particular for representing static knowledge (static programs) and solving 

problems by simply querying the knowledge base. 

 

In this representation, each state of the environment has a date corresponding to its date of creation, date (Date) 

of state changes. This is then expressed as follows: Id1:E1, Id2:E2, ..., Idn:En are objects present in the 

environment. The PtrObject parameter is a pointer to the object that will be created later. Each environment of 

objects is provided with a clock that contains the different moments of the evolution of the environment. The 

instantiated part of this environment represents the past state of the base while its uninstantiated part represents 

its future state, which may contain future modifications. Each Ei is also represented by an incomplete structure 

of the form: Ei = [next(NextState), status(_), date(0), att1 := val1,..., atti := vali,..., attn := valn] 

 

where NextState is a pointer to the future state of the object. The "status" attribute is used to define the status of 

the object. When associated with an uninstantiated variable, "status (_)", the object is active. To give an object 

an inactive status it is enough to instantiate this variable in the following way "status (off)". 

 

Status changes are made and defeated in sync with Prolog's backtrack. It is therefore possible to return, by 

backtracking, the previous states of an object or the environment of objects. 

 

The universe of objects is formed by a series of layers ordered in time that each reflect an aspect of the universe 

at a given moment. Each layer only stores the information that differentiates it from the previous layer. Each 

object retains its history by memorizing the changes made from its creation to the present moment. By default, 

as in the approach of "intentional objects" [Chen 88a], the most recent version hides the old ones ("non-

monotonicity"). 

 

3.2 Update Operations 

The universe of objects is formed of a series of layers that each reflect an aspect of it at a given moment. The 

layers are ordered in time (resolution time), each memorizing only the information that differentiates it from the 

previous layer. There is no duplication of data. A user can operate on the most recent layer (including the 

previous ones), or on an earlier layer, by explicit designation. The universe of objects is represented by an 

incomplete structure that contains its different layers. Each object retains its history by memorizing the changes 

it has undergone since its creation until now. In imperative object languages such as C++, Java, etc., only the 

last state is usually retained, and the computer variables associated with the attributes of the instance are 

assigned during the lifetime of the object, without any possibility. back on the previous states of this object. In 

the OO-Prolog language, an object is characterized by its history and behaviour. Although the entire history of 

an object is available, you can access by default only the last state, that is to say the most recent, as in the 

example below. 

?-...., P <- (setval(x(_),5), setval(x(_),10), getval(x(_),X)). 

{...,X = 10} 

 

Each change made during the deduction is automatically defeated by backtracking. As the resolution time goes 

back when looking for new branches leading to new solutions, this is translated operationally into OO-Prolog by 

the restoration of the previous states when there is backtracking. Time then has a tree structure. 

?-....,P <- ( setval(x(_),5),(setval(x(_),10);setval(x(_),20)),getval(x(_),X). 

{..., X = 10} 

{..., X = 20} 
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In order to allow access to any version of an object, each version is completely characterized by its creation 

time. Implantation is done using a temporal mechanism. A global time clock for creating versions is initialized 

to zero at the beginning of the deduction. It is incremented by one unit at each change and decremented during a 

"backtracking". 

?-....,P <- ( setval(x(_),5,T1),  

 (setval(x(_),10,T2);setval(x(_),20,T2)),getval(x(_),X,T1),  getval(x(_),Y,T2) ). 

{..., T1 = ..., T2 = ..., X = 5, Y = 10} 

{..., T1 = ..., T2 = ..., X = 5, Y = 20} 

 

We see in this example that the value of the abscissa of P is 5 at time T1 and 10 or 20 at time T2. Time is 

manipulated here explicitly. 

 

Dynamic creation of an Idn+1 object consists in adding the Idn + 1 object in the uninstantiated part of the object 

environment. Suppose that ENV = [next( F ), clock([0|_]),...,date(0), Id1:E1,  Id2:E2,...,Idn:En] is the state of 

the environment before creating the Idn+1 object. So after creating this object, ENV becomes: 

 

ENV = [next([next(F’),date(1),Idn+1:En+1]), clock([0,1|_]), date(0),Id1:E1,...,Idn:En]. 

with En+1 = [next(_),date(1),...]. It's as if all other objects have been duplicated. However, we can see that there 

is no redundancy. This creation is carried out by the methods newObject (O, E) (formerly denoted new) and 

newCObject (O, E) (formerly denoted create) whose effect is to create the object O with the state E. The 

newCObject method (O, E) has the effect of automatically creating and classifying the newly created object. 

 

Example: 

?- #’Point’ <- newObject(P,[]), P <- display. 

TERMINAL :: < #[#'Point', 5] > 

  class(#'Object') <- #Point 

  x(#'Point') <- 0 

  y(#'Point') <- 0 

 {P = #[#'Point', 5]} 

 

3.2.2 Assigning a value to an attribute 

The assignment operation is to give a value to an attribute. In the OO-Prolog language, this operation is 

reversible because it is possible to return, by backspace, on the previous states of an object. When an attribute 

Att, having the value Val, receives a new value NVal, instead of overwriting the old value, as in the imperative 

approach of the programming, one saves the new value in the uninstantiated part of the structure representing 

the state of the object. Let's illustrate this procedure with a simple example. Consider the state of a point on the 

plane P at time 0. 

 

E = [next(X), statut(_), date(0), class(#’Object’) := #’Point’, x(#’Point’) := 1, y(#’Point’) := 2]  

After assigning the value 3 to the attribute x (# 'Point') of P, E is modified as follows: 

E = [next([next(X’), date(1),x(#’Point’) := 3] ), statut(_), date(0), class(#’Object’) := #’Point’, x(#’Point’) := 1, 

y(#’Point’) := 2]. 

 

After performing this operation, we obtain another state of the object P corresponding to the date date (1). The 

assignment is performed by the setval (Att, Val), setval (Att, Val, Date), setvalc (Att, Val), setvalc (Att, Val, 

Date) methods that take an attribute and a value as input. possibly returns the date corresponding to the creation 

of a new state of the modified object. The only difference between setval and setvalc (formerly setv) is that the 

application of setvalc to an object is followed by an automatic classification of that object. In both cases, there is 

control of the type of the value Val passed as argument of the method. With the initial state of our environment 

above, we have: 

 ?- P <- setval(x(I),3,Date). 

 {P= #[#'Point',1], I = #'Point', Date = 1} 

 

and of course we can also have, as in Prolog 

 ?- P <- setval(x(_),3,1). 

 {} 

 

which leads to a success. 
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There are four methods to access the value of an attribute: 

 getval(Att,Val), getval(Att,Val,Date), getv(Att,Val), getv(Att,Val,Date) 

 

Example: 

 ?- P <- (setval(x(_),3,Date), getval(x(_),X,0), getval(y(_),Y)).  

 {P= #[#'Point',1], X = 1, Y = 2} 

 ?- P <- (setval(x(_),3,Date), getv(x(_),X,Date)). 

 {P= #[#'Point',1], Date = 1, X = 1} 

 {P= #[#'Point',1], Date = 1, X = 3} 

 

As in Prolog, access operations to the value of an attribute can be used to assign, unification, a value to an 

attribute, if the initial value of the attribute at the given time is a free variable. 

 ?- ..., P  <- ( setval(x(_),Val), getval(x(_),3) ).  

 {..., P= #[#'Point',1], Val = 3} 

 

3.2.2 Deleting a value from an attribute 

The operation of deleting a value to an attribute is defined as the assignment of a variable not instantiated to this 

attribute. This makes it possible to cancel the previous value on the same date and thus define a future for this 

variable. The attribute can thus be considered as having no value yet. 

 

3.2.3 Rules for optimizing the global clock management process 

In order to optimize the management of global clock changes and dates, we have introduced the following rules: 

- The global clock can be incremented only when a change of state affects that concerns a variable already 

instantiated; 

- The incrementation of the dates can take place only during a change of value of an already affected 

variable. 

- In other cases, the global clock remains stable and undergoes no change. 

 

Let's illustrate these rules with a simple example. Consider once more the state of a point on the plane P at time t 

= 0. 

E = [next(X), statut(_), date(0), class(#’Object’) := #’Point’, x(#’Point’) := 1]  

After assigning the value 3 to the attribute x (# 'Point') of P, E is modified as follows: 

E = [next([next(X’), date(1),x(#’Point’) := 3] ), statut(_), date(0), class(#’Object’) := #’Point’, x(#’Point’) := 

1]. 

 

Consider now the assignment of the value 2 to the attribute y (# 'Point') of P. E is then modified as follows: 

E = [next([next(next([next(X’’), date(1),y(#’Point’) := 2] )), date(1),x(#’Point’) := 3] ), statut(_), date(0), 

class(#’Object’) := #’Point’, x(#’Point’) := 1]. 

 

This time, the clock does not change, so the change only affects an attribute that was not instantiated on the 

current date. 

 

This same behavior is preserved when the change is on an earlier date. Thus, assigning the value 5 to the x (# 

'Point') attribute of P on date 0 will not change the global clock as shown in the code below. The environment E 

is then modified as follows: 

E = [next([next(next([next(next([next(X’’’), date(1),x(#’Point’) := 2] )), date(1),y(#’Point’) := 2] )), 

date(1),x(#’Point’) := 3] ), status(_), date(0), class(#’Object’) := #’Point’, x(#’Point’) := 1]. 

 

Since the x attribute was not yet assigned to date 1, the state change made does not change the global clock. 

 

3.2.4 Implantation 

The version mechanism described above is also the one used in the ObjTL language (a prototype whose various 

extensions led to the realization of the OO-Prolog language) [Ngomo 95a, 95b, 95c]. However, in ObjTL the 

object environment appears explicitly both in the signature of a method and in the protocol of a message 

sending: 

 

- Definition of a method: 

     <class> << Env >> <selector>(<arg1>,...,<argn>) :- <body>.  

- Sending message: 
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 <object> << Env <- <message> sends goal B to object <object>, the search for the method begins at its 

instantiation class. 

 <object> as <class> << Env <- <message> sends the goal <message> to the object <object>, the search 

for the method begins at the class <class>. 

 <object> << Env <- <message> sends goal B to object <object>, the search for the method starts at its 

instantiation class and the search strategy is a linearization. 

 <object> as <class> << Env <- <message> sends the goal <message> to the object <object>, the search 

for the method starts at the level of the class <class> and the search strategy is a linearization. 

 

The explicit use of the object environment by the user can be a source of problems: 

 a rather heavy syntax compared to the conventional syntax; 

 there is probably a risk of the user manipulating the object environment directly without going through 

the appropriate methods. 

 

It therefore seemed useful to polish this syntax by relieving the user of the management of this environment. 

This allows for a simpler syntax that is closer to conventional syntax. 

 

- Definition of a method: The form of the object clauses becomes: 

 <class> :: <selector>arg1>,...,<argn>) :- <body>.  

- Sending message: a message sending in one of the following forms: 

 

 <object> <- <message> sends goal B to object <object>, the search for the method starts at its 

instantiation class. 

 <object> <- (<class>: <message>) sends the goal <message> to the object <object>, the search for the 

method starts at the level of the class <class>. 

 <object> <- <message> sends goal B to object <object>, the search for the method starts at its 

instantiation class and the search strategy is a linearization. 

 <object> <- (<class>: <message>) sends the goal <message> to the object <object>, the search for the 

method starts at the level of the class <class> and the search strategy is a linearization. 

 

Example: For the class of the points of the plane we will be able to define the method of access to the value of 

the attribute x (#'Point') as follows: 

 #’Point’ :: getx(X) :- self <- getval(x(#’Point’),X). 

 

A query can then be: 

 ?- #’Point’ <- newObject(P,[x(_):=2,y(_):=3]),P <- getx(X). 

 

This result is obtained by meta-interpretation. Let A be the query to be reduced. Query A can contain standard 

Prolog literals or object-literals (sending messages). Among classical literals, we will distinguish those 

associated with system predicates and others. They will be solved by the interpreter Prolog. Similarly, object 

literals associated with the basic methods will be treated differently. They will be solved by a low level 

interpreter. 

 

3.2.4 The formal unification of Prolog terms 

The heart of the computational model of logic programs is the unification algorithm. Unification makes it 

possible to determine, if it exists, the common instance of two terms. Unification is at the root of most automatic 

deduction work and the use of logical inference in artificial intelligence. 

 

A term t is a common instance of two terms t1 and t2 if there are substitutions 1 and 2 such that t equals 

1t1 and equal to 2t2. A term s is more general than a term t if t is an instance of s, but s is not an instance of 

t. A term s is an alphabetical variant of a term t if both s is an instance of t and t is an instance of s. A two-term 

unifier is a substitution that makes the terms identical. If two terms have a unifying unit, we will say that they 

unite. There is a close relationship between unifiers and common instances. Any unifier determines a common 

instance, and conversely any common instance determines a unifier. 

 

A more general unifier or "upg" of two terms is a unifier such that the associated common instance is the most 

general one. If two terms unite then there is a single more general unifier. This uniqueness is to "rename" 

variables closely. Equivalently, two univariate terms have a single most general common instance, an alphabetic 

variant. 
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A unification algorithm calculates the most general unifier of two terms, if any, and displays "failure" otherwise. 

The algorithm for unification presented below is based on the solution of equations. The input for the algorithm 

consists of two terms, T1 and T2. The output of the algorithm is the "upg" of the two terms if they unify or "fail" 

if they do not unite. The algorithm uses a stack to store the equations to solve and a location  to group the 

substitution of the output. 

 

The vast majority of Prolog systems do not use the classic unification algorithm, deliberately choosing not to 

perform the occurrence test (a variable can be unified to a term containing it). This choice is not without 

problems at the theoretical level, since it defies the model of the universe of Herbrand limited finite terms 

[Herbrand 67]. At a more operational level, the implementation without special precautions of such an 

algorithm, ignoring the test of occurrence, makes it subject to loops. Thus, unlike the original unification 

algorithm [Robinson 65], a variable can be linked to a term containing it. The main reason for this omission is a 

significant gain in execution time. Indeed, performing the test of occurrence is an expensive operation since for 

each substitution creation {(x, t)}, it makes it necessary to go completely through the term t in order to 

determine whether the variable x is or is not present in t. 

 

In OO-Prolog, an object has a unique identifier that distinguishes objects. Two different objects can not have the 

same identifier. In this case, the application of the Prolog unification procedure to two OO-Prolog objects will 

always result in a failure since two distinct identifiers can never be unified. So we have to modify the classic 

procedure of Prolog unification so that it takes into account the objects and the inheritance relation. 

 

In order for the object layer to react homogeneously with the rest of the Prolog language, it must have 

mechanisms identical to those of all the types of data present in Prolog. We propose to define a specific 

mechanism to take into account the objects. 

In the case of objects, the use of this primitive poses problems of names referencing the objects. Two 

structurally unified objects can have different identifiers. There is no valid justification for accepting a success 

for the unification of different object names while the unification of distinct functor terms fails even if all the 

other elements composing the terms are identical [Cervoni 94]. As a result, we are obliged to have specific 

operators for object names. In OO-Prolog the name of an object is preceded by the operator #: #<name>. For 

example "#'Point'" instead of 'Point'. This notation distinguishes object names from other Prolog terms. 

 

3.2.5 Abstract Interpreter for OO-Prolog Programs 

The abstract interpreter for OO-Prolog programs is an extension of the Prolog interpreter to logical objects. This 

interpreter is a modification of the abstract interpreter for Prolog [Sterling 90] programs. It gives the solution of 

a question G relating to a program P. The output of the interpreter is an instance of G, if a demonstration of such 

an instance is found, or "failure" if there was failure during of the calculation. If non-object literals are reduced 

in the traditional way, reducing object literals requires additional processing to accommodate inheritance. Thus, 

if the current goal is, for example, of the form O <- M, then this literal can not be unified with any clause in P. 

The processing consists of finding the class of the object receiving the message, C, and browse the subgraph of 

C to search for the definition class or classes of method M. For each class found, there is a (renamed) clause C :: 

M '<- B1, ..., Bn, n ≥ 0. Once such a clause is chosen, the processing continues as in the classical case by 

replacing in the resolvent the current goal by the body of the clause B1, ..., Bn. Then, we apply not only to the 

resolvent and to G, but also to E, an incomplete dynamic structure that undergoes unifications during 

processing. 

 

3.2.6 Unification Algorithm Extensions 

The unification of two terms of the same class mainly consists of recursively unifying the fields of the structures 

of the instances. In the case of objects, two instances of the same class are semantically univariable if and only if 

the values of their respective attributes are uniformable in the sense of Prolog or semantically uniformable. This 

definition does not allow for example to unify a rectangle of length 4 and width 4 to a square of side 4, unless 

we use the classification mechanism. It is still necessary that the user explicitly express the classification 

constraints. If the instances are not of the same class, it is necessary to search between them for a possible 

inheritance relation which would allow to unify them, by specialization or by generalization. Extensions to the 

algorithm presented previously are described in [Ngomo 96]. We do not describe them in this article that 

focuses on the dynamic nature of objects. 

 

3.2.6 Unification Algorithm Extensions 

The unification of two terms of the same class mainly consists of recursively unifying the fields of the structures 

of the instances. In the case of objects, two instances of the same class are semantically univariable if and only if 
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the values of their respective attributes are uniformable in the sense of Prolog or semantically uniformable. This 

definition does not allow for example to unify a rectangle R = (length: 4, width: 4) to a square C of side equal to 

4, unless we use the classification mechanism. It is still necessary that the user explicitly express the 

classification constraints. If the instances are not of the same class, it is necessary to search between them for a 

possible inheritance relation which would allow to unify them, by specialization or by generalization. 

Extensions to the algorithm presented previously are described in [Ngomo 96]. We do not describe them in this 

paper that focuses on the dynamic nature of objects. 

 

3.2.7 Some properties of the model 

 

3.2.7.1 A simple syntax 

The OO-Prolog language has a simple syntax similar to that of conventional object languages. 

 

3.2.7.2 Changing the quantification of variables 

In OO-Prolog, the problem of changing the quantization of logical variables is solved by using existential 

environments, in which all variables are quantized existentially. Thus, the following queries 

 ?- #’Point’ <- new(P,[]), P <- setval(x(_),X,D), X = 5, P <- getval(x(_),Y). 

 ?- #’Point’ <- new(P,[]), X = 5, P <- (setval(x(_),X,D), getval(x(_),Y)). 

both lead to the same result: {..., X = 5, Y = 5}. 

 

3.2.7.3 Consistency of updates 

The approach presented here allows you to manage updates consistently. In contrast to imperative languages 

that use Prolog's "assert" and "retract" predicates (such as Prolog++ [Moss 86, 90, 94] [LPA 2017]) or that 

implement imperative variables (such as ESP [Chikayama 83, 84]), changes in OO-Prolog are made and undone 

in synchronization with the backtracking. This concerns all creation, modification and deletion operations. We 

can then have: 

? #’Point’ <- new(P,[]), P <- ( (setval(x(_),2,D) ; setval(x(_),5,D)), getval(x(_),Val),delete(x(_) ). 

{..., D = 1, Val =2} 

{..., D = 1, Val =5} 

 

3.2.7.4 Formal significance of updates 

During the evolution of the universe of objects, each state or layer corresponds to a given moment. Let E be the 

set of these states and Rp be the temporal precedence relation between two states of the universe E: << for all et 

and et' comparable elements of E (t and t' being two points of the resolution time, et and et’ are respectively the 

state of the universe at time t and at time t'), then: (et Rp  et’) or (et = et’) or (et Rp  et’) >>. In this case, if et Rp  

et’, then et’ inherits somehow from et. Since the resolution time is arborescent, the relation Rp is a partial order 

relation since we can not necessarily compare two elements of E. Our temporal model M is then composed of 

the set E, the binary relation Rp on E and a function I: E x {Formulas of language}  {1 , 0} which associates to 

each formula of language its values of truth to the different possible states of the universe.  

 

The interpretation of a formula is then done relative to a given state of the universe of objects, considering an 

interpretation as a couple (M, e). If ei is a version before ej then ej somehow inherit ei. Each copy generated 

contains locally only the information that differentiates it from its generator. The rest is somehow inherited. The 

information is stored in this structure without redundancy. The model of time is here an "finitary infinite" tree, 

that is to say a tree whose each node admits a non-zero finite number of successors. The sequence corresponds 

to the particular case where this number is worth the unit. In a strictly temporal interpretation, the sequence of 

situations represents the evolution of the state of the world over time. 

 

IV. CONCLUSION AND PERSPECTIVES 
State and state change modeling of an object is a central problem in object-based logic programming. This 

article presents an in-depth discussion of existing approaches. He then proposes a new mechanism for object 

versions. This mechanism is based on the unification and use of incomplete structures that are inherently 

dynamic and thus represent the dynamic aspects of logical objects. He uses unification as a matching tool. As a 

result, the state changes are made and undone in synchronization with the backtracking. An object is then 

characterized by its behavior and its history. The set of states is the set of versions of an object. These versions 

are ordered according to a partial order which expresses the successive derivations of a version, and one speaks 

about tree of versions. One of the problems often encountered in versioning models is the consistency of the 
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versions between them and its maintenance through consistent configurations. The versioning mechanism of the 

OO-Prolog language offers several advantages, both theoretically and practically: 

- compared to imperative approaches that introduce edge effects programming, it has the advantage of having 

a declarative, clear and coherent semantics; 

- the changes are expressed in terms of a search tree, that is to say a dynamic structure of logic programming; 

- the deletion of a value at an attribute on a given date from the global clock corresponding to the assignment 

of a variable to this attribute, which opens an evolution perspective to this attribute (a future); 

- thanks to the use of an existential environment with an always available future, it facilitates the links 

between variables; which brings a solution to the problem of changing the quantification of variables; 

- in relation to the interaction between version management, the identity of an object and the type of an 

object, OO-Prolog adopts a dynamic solution. An object O can reference an object O '. If the O object has 

multiple versions, the reference is dynamic and interpreted when the program runs. A dynamic reference 

can be considered as a query on all versions. 

 

Our work continues in optimizing the implementation techniques of the proposed mechanism. The objects being 

manipulated in the dynamic space, this can quickly lead to a saturation of the batteries of this space. It is then 

necessary to limit as much as possible the write accesses in this environment which, with respect to the code 

zone, is much more limited. This is not a pressing need, given the current power of computers and their storage 

capacity. We simply want to increase the performance of our language. Our work also focuses on the design of a 

multi-tier architecture and service-oriented database query interface in OO-Prolog, with applications in several 

domains. Another avenue explored is the design of a service platform around the OO-Prolog language: 

interrogation service, resolution service, exchange service with other languages, etc. 
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